
Acoustic Intelligence in Machines

Anurag Kumar

CMU-LTI-18-015

Sep 27th, 2018

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee
Bhiksha Raj (Chair), Carnegie Mellon University

Alexander Hauptmann, Carnegie Mellon University
Louis-Philippe Morency, Carnegie Mellon University

Rita Singh, Carnegie Mellon University
Daniel P W Ellis, Google Inc.

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2018 Anurag Kumar

www.lti.cs.cmu.edu

Keywords: Audio Event Detection, Weak Label Learning, Deep Learning for Sounds, Trans-
fer Learning for Sounds, Natural Language Understanding of Sounds

I have often lamented that we cannot close our ears with as much ease as we can our eyes.
–Richard Steele, 1720

To My Parents

vi

Abstract

One of the desiderata in machine intelligence is that machines must be able to
comprehend sounds as humans do. They must know about various sounds, associate
them with physical objects, entities or events, be able to recognize and categorize them
and know or be able to discover relationships between them. We call this intelligence,
Acoustic Intelligence.

Automated machine understanding of sounds in specific forms such as speech and
music, has become relatively advanced, and have been successfully deployed in systems
which are now part of our daily life. However, the same cannot be said about other
naturally occurring sounds in our environment. Speech production is constrained by
our vocal cords, restricting in certain senses the input space over which machines need
to work for their automated understanding. However, naturally occurring sounds are
entirely unrestricted. The problem is exacerbated by the sheer vastness of the number
of sound types, the diversity, and variability of sound types, the variations in their
structure, and even their interpretation.

We formalize acoustic intelligence in machines as consisting of two main problems;
first, in which we aim to acquire commonsense knowledge about sounds and the sec-
ond, where we consider the problem of recognizing their presence in audio recordings.
The first one requires natural language understanding of sounds and the second one
is about large-scale recognition and detection of sound events and scenes. On the
natural language understanding front, we develop methods to identify and catalog
“audible phrases” and then to extract higher-level semantic relationships for sounds
using these audible phrases. To the best of our knowledge, this is the first work to
extract sound related knowledge from textual data.

On the sound event recognition front, we address the primary barrier of lack of
labeled data for sounds. We propose to learn from weakly labeled data and show for
the first time that audio event detectors can be trained using weakly labeled data. We
formulate the problem through multiple instance learning and then describe several
methods under this framework for weakly supervised audio event detection. We then
give deep learning methods for weakly labeled audio event detection as well, leading
to the state of the art performances on several datasets. We show that these deep
learning methods can be further employed in transfer learning for sounds. Finally, on
the weak label front, we also propose a unified learning framework which leverages
both strongly and weakly labeled data at the same time.

The above methods try to address labels challenges in the learning phase. We
attempt to address the challenges during the evaluation phase as well. Evaluation of
trained models on a large scale test set once again requires data labeling. We describe
methods to precisely estimate the performance of a trained model under restricted
labeling budget.

viii

Acknowledgments

First and foremost, I would like to thank my advisor Bhiksha Raj. It is because
of his firm belief in me and patience that I have been able to complete this journey of
PhD. He was always available to not only share his immense knowledge and expertise
but also consistently motivated and guided me in the right direction. He taught me
the importance of big picture and long-term vision which are essential not only in
research but in life as well. I could not have asked for a better advisor, and I will miss
just walking in to his office to talk about research, life, and many other things.

I would like to thank Prof. Rita Singh. I worked closely with her and always
looked forward to her feedback on my research. She helped me in understanding the
subtleties and nuances of different problems I undertook, which played an important
role in shaping my dissertation.

I would also like to express my sincere gratitude to other members of my thesis
committee, Dan Ellis, Alex Hauptmann, and Louis-Philippe Morency. I am indebted
for their valuable feedback, comments, and technical discussions on my dissertation.
The lessons I learned from their insights and difficult questions not only impacted this
dissertation but will continue to shape my future research endeavors.

My sincere thanks also to Dinei Florencio for hosting and mentoring me at Mi-
crosoft Research. He gave me the opportunity to work on speech enhancement, an
area of research which I found to be incredibly fascinating and interesting. I would
then like to thank Christian Fugen and Maksim Khadkevich at Facebook Research
for hosting me for another exciting summer in industry. I had the opportunity to see
some real-life applications of my research with them.

I would like to wholeheartedly thank the Robust-MLSP research group. My most
sincere thanks and deepest gratitude to Richard Stern for his valuable comments and
constructive feedback on my works and presentations. Many many thanks to Raymond
Xia, Mahmoud Alismail, Benjamin Elizalde, Abelino Jimenez, Anders Oland, Tyler
Vuong, Yang Gao, Wayne Zhao, Yandong Wen, Nikolas Wolfe, Shahan Memon, Hira
Dhamyal, Wenbo Liu, Anjali Menon, Nstor Becerra Yoma, and Nia Bradley. I am
grateful for their suggestions and helpful discussions. I learned something from each
one of them, and am fortunate to have them as my collaborators and friends. I would
especially like to thank Raymond Xia for his numerous suggestions on my thesis
presentation and draft; and Ankit Shah and Benjamin Elizalde for being amazing
collaborators on some of my works. I will always cherish and remember the countless
dinners and endless fun with Mahmoud, Benjamin, Raymond, and Tyler.

I would also like to acknowledge the amazing LTI staff for their help and support.
I want to especially thank Stacey Young for her exceptional readiness in helping and
supporting students.

Lastly, I would like to thank my family. I will begin by thanking my parents,
Saroj and Surendra, for their unconditional and never-ending love, and for supporting
every decision I made. I want to thank Anamika, Rajesh, Vivek and Neha for their
continuous love, support, motivation, and encouragement. My nieces Khushi and
Shruti for being the highlight of my yearly vacation to India. They brought smiles on
my face more than anyone else in this world.

Contents

1 Introduction 1

1.1 Sound/Audio Events and Acoustic Scenes . 3

1.1.1 Sound Objects . 3

1.1.2 Sound Events . 5

1.1.3 Acoustic Scenes . 6

1.2 Acoustic Intelligence in Machines (AIM) . 6

1.3 Natural Language Understanding of Sounds . 8

1.4 Large Scale Sound Event Detection . 10

1.4.1 Labeled Data Challenge . 10

1.4.2 Evaluation of Models on Large Scale . 12

1.5 Applications . 13

1.6 Performance Metrics . 15

1.7 Organization . 16

2 Natural Language Understanding of Sounds 18

2.1 Introduction . 18

2.1.1 Related Works . 20

2.2 Audible Phrases or Sonic Phrases . 21

2.2.1 Finding Audible Phrases: Cataloging Sounds 22

2.2.2 Unsupervised Cataloging of Sounds . 22

2.2.3 Analysis of Unsupervised Method . 23

2.2.4 Supervised Filtering . 25

2.3 Learning Acoustic Scene-Concept Relations . 26

2.3.1 Training Data . 27

2.3.2 Classification . 27

2.4 Summary and Conclusions . 29

3 Scaling Audio Event Detection: - The Promise of Weak Label Learning 32

3.1 Introduction . 32

3.2 Literature on Audio Event Detection . 34

3.3 Weakly Labeled Learning of Audio Events . 36

3.3.1 Problem Formulation . 37

3.4 Multiple Instance Learning . 38

3.4.1 MIL using Support Vector Machines . 38

3.4.2 MIL using Neural Networks (NN-MIL) . 40

3.5 MIL for Weakly Labeled AED . 42

x

3.5.1 Temporal Localization of Events . 42

3.6 Experiments and Results . 42

3.6.1 Features for Audio Segments . 42

3.6.2 Experimental Setup . 44

3.6.3 Results . 45

3.6.4 Temporal Localization of Events . 48

3.7 Scalable MIL Methods . 49

3.7.1 miFV . 50

3.7.2 miSUP . 51

3.7.3 Experiments and Results . 51

3.8 Discussions and Conclusions . 53

4 Deep Learning for Weakly Labeled Audio Event Detection 55

4.1 Introduction . 55

4.2 Weakly Supervised Deep Networks . 56

4.2.1 Strong Label Assumption Training . 57

4.2.2 Weakly Labeled Training . 58

4.2.3 Characteristics of WLAT . 61

4.2.4 Loss Function . 62

4.3 Experiments and Results: Weakly Labeled Learning 63

4.3.1 Datasets . 63

4.3.2 Multi-Scale Acoustic Features . 64

4.3.3 Network Architectures . 64

4.3.4 Metrics and Experimental Setup . 65

4.3.5 Urbansounds Results . 65

4.3.6 YouTube Results . 67

4.3.7 Temporal Localization . 68

4.4 Experiments and Results: Large Vocabulary Weakly Labeled Learning 69

4.4.1 Experiments with Logmel Acoustic Features 70

4.5 Experiments and Results: Google Embeddings and Attention Like Mapping Func-
tions . 73

4.5.1 Network Architecture . 73

4.5.2 Results . 74

4.6 Closer Look at Weakly Labeled Learning . 74

4.6.1 Label Density . 76

4.6.2 Corrupted Labels Noise . 78

4.6.3 Weakly Labeled Audio In the Wild . 80

4.7 Summary and Conclusions . 82

5 A Unified Framework: Combining Weakly and Strongly Labeled Data 83

5.1 Introduction . 83

5.2 Naive WEASL . 85

5.3 Generalized WEASL . 85

5.4 graph-WEASL . 86

5.4.1 Manifold Regularization approach for WEASL 87

5.4.2 Optimization Solution . 88

5.5 Experiments and Results . 89

xi

5.5.1 Experimental Setup . 89

5.5.2 Audio Event Recognition . 90

5.5.3 Recognition of Strongly Labeled Events Set 91

5.5.4 Acoustic Scene Recognition . 93

5.6 Discussions and Conclusions . 93

6 Transfer Learning for Sounds 96

6.1 Introduction . 96

6.1.1 Related Works . 97

6.2 Transfer and Representation Learning . 99

6.2.1 Direct Off-the-shelf Representations . 100

6.2.2 Transfer and Adapt for Learning Representations 100

6.3 Target Tasks . 101

6.3.1 Sound Event Classification On ESC-50 dataset 101

6.3.2 Acoustic Scenes Classification . 102

6.4 Experiments and Results . 102

6.4.1 Experimental Setup Details . 102

6.4.2 Results: Sound Event Classification on ESC-50 103

6.4.3 Results: Acoustic Scene Classification . 105

6.4.4 Additional Analysis . 106

6.5 Summary and Conclusions . 109

7 Evaluation on Large Scale: Limited Labeling Budget 110

7.1 Introduction . 110

7.1.1 Related Works . 112

7.2 Accuracy Estimation . 113

7.2.1 Simple Random Sampling Estimation . 113

7.3 Stratified Sampling Estimation . 115

7.3.1 Proportional (PRO) Allocation . 115

7.3.2 Equal (EQU) Allocation . 116

7.3.3 Optimal (OPT) Allocation . 116

7.3.4 Comparison of Variances . 118

7.3.5 Stratification Methods . 120

7.4 Experiments and Results . 121

7.4.1 Proportional Allocation . 122

7.4.2 Equal Allocation . 122

7.4.3 Optimal Allocation . 124

7.4.4 Dependence on True Accuracy . 125

7.5 Summary and Future Directions . 127

8 Some Applications 129

8.1 Geotagging in Multimedia . 129

8.1.1 Audio Semantic Content based Geotagging 130

8.1.2 Learning Ml and Wl using semi-NMF . 131

8.1.3 Discriminative Learning using Wl . 132

8.1.4 Kernel Fusion for Semantic Content based Prediction 133

8.1.5 Experiments and Results . 133

xii

8.2 Query by Example Retrieval . 137
8.2.1 Siamese Network for Encoding . 138
8.2.2 Representations and Retrieval . 139
8.2.3 Dataset and Experimental Setup . 140
8.2.4 Siamese Network Training . 140
8.2.5 Evaluation and results . 141
8.2.6 Results and Discussion . 142

8.3 Never Ending Learning of Sounds . 143

9 Conclusions and Future Works 145
9.1 Self Training for AED . 145

9.1.1 Clarity Index Based Instance Selection . 146
9.1.2 Experiments and Results . 147

9.2 Conclusions and Future Works . 148

Bibliography 150

xiii

List of Figures

1.1 Acoustic Intelligence in Machines (AIM) . 8

1.2 Acoustic Intelligence in Machines . 9

2.1 Natural Language Understanding of Sounds: Sub-problems we study. 19

2.2 Unsupervised cataloging of sounds . 23

2.3 Number of sound concepts for each pattern . 24

3.1 General Framework for Training Audio Event Detector 33

3.2 Weakly Labeled vs Strongly Labeled . 36

3.3 A Recording of Footsteps . 37

3.4 ROC Curves for using miSVM framework . 47

3.5 ROC Curves for using NN-MIL framework . 48

3.6 ROC Curves for Temporal Localization (First Two-miSVM, Last Two - NN-MIL) 49

3.7 Mean Training Times (Log(sec)) . 52

4.1 Schema of Strong Label Assumption Training . 57

4.2 Schema of Weak Label Training . 59

4.3 An example CNN architecture for weak label training. 62

4.4 Top:SLAT and Bottom:WLAT Architectures used in Experiments (4.3) 64

4.5 Comparison of Computational time for NW and Nslat 67

4.6 Temporal Localization Examples. Left: An Example of Siren Sound, Right: An
Example of Gunshot Sound. 69

4.7 Number of examples for different sound events in training (Red) and test (Green)
sets. 69

4.8 Number of Events vs Number of Examples (Distribution of examples and events)
(Red) and eval (Green) sets . 70

4.9 Network Architecture for Large Vocabulary Experiments (4.4.1) 70

4.10 Temporal Localization Examples from Audioset. 72

4.11 Network Architecture for Large Vocabulary Experiments on Embeddings (4.5) . . 73

4.12 Effect of corruption of labels on performance . 79

5.1 Unified Framework for Weakly and Strongly Labeled learning (WEASL) 86

5.2 Hat Loss in semi-supervised SVM . 94

6.1 The basic idea behind transfer learning . 97

6.2 Transfer Learning Framework . 99

6.3 Transfer Learning: ESC-50 classwise accuracies . 105

6.4 Transfer Learning: DCASE16 classwise accuracies 107

xiv

6.5 Visualizations of Learned Representations . 108

7.1 Two Cases for Illustration . 114
7.2 Proportional Stratified Sampling . 123
7.3 MVR Variation With K for Proportional . 124
7.4 Equal Stratified Sampling . 125
7.5 MVR Variation With K for Equal . 126
7.6 OPT-A1 Optimal Stratified Sampling . 126
7.7 OPT-A1 Dependence on nini . 127
7.8 OPTA1 vs OPTA2, nini and nstep . 127
7.9 epsilon,EQSZ,K = 6,OPTA2 . 128

8.1 Average Precision for Cities (MAP in right extreme) 136
8.2 Siamese Network For Encoding . 138
8.3 Architecture of the Subnetworks in the Siamese Network 139
8.4 Variation of MPK with different K, from K = 1 to K = 30 141
8.5 Examples of content-based retrieval. Left: Clock Tick, Right: Brushing Teeth . . . 142

9.1 Self Training for SSL . 146

xv

List of Tables

1.1 Some Public Datasets of Sound Events . 11

1.2 True Condition and Prediction by Classifier . 15

2.1 POS patterns of sound concepts . 24

2.2 Precision for the 100 most frequent phrases (for each POS pattern) 24

2.3 Accuracy of Supervised Learning . 26

2.4 Example Paths for Positive Training Data . 27

2.5 Example Paths for Negative Training Data . 28

2.6 36 Acoustic environments . 29

2.7 Examples of Environment (Scene)-sounds relations discovered 29

3.1 Number of Positive Bags for each event . 44

3.2 AUC comparison with supervised SVM . 45

3.3 AUC for different number of components in GMM (miSVM) 46

3.4 Effect of ~M features addition (miSVM) . 46

3.5 Overall Results (miSVM) . 47

3.6 Overall Results (NN-MIL) . 48

3.7 AUC for temporal localization of events . 49

3.8 Average Precision for Each Event . 52

3.9 AP Values For different K in GMM M . 52

4.1 Performance of NW and Nslat and effect of multi-scale training 65

4.2 Performance of NW for different mapping functions 66

4.3 AP and AUC for each event using Nslat and NW 66

4.4 Performance of NW designed for different mapping functions 66

4.5 AP and AUC for each event using Nslat and NW with YouTube Training 67

4.6 Comparing NW trained on Urbansound and on YouTube training set. 68

4.7 WLAT vs SLAT on Audioset . 71

4.8 AP comparison for 10 sound events with lowest and highest APs using baseline
N slat
S . 72

4.9 Comparison different methods . 74

4.10 Effect of label density on performance . 77

4.11 10 Audio Events with highest drop in AP for Audioset-At-30 (w.r.t Audioset) . . 78

4.12 10 Audio Events with highest drop in AP for Audioset-At-60 (w.r.t Audioset) . . 78

4.13 Weakly Labeled Audio in the Wild. Comparison with Audioset 79

4.14 Best 10 and Worst 10 performing events (ordered by AP) for YouTube-Wild 80

4.15 10 Events with highest relative drop in performance 81

xvi

5.1 Results (AP) using miSVM and naive-WEASL . 91
5.2 Results (AP) using graph-WEASL . 92
5.3 Temporal Localization Results . 92
5.4 Acoustic Scene Results (AP). graph-WEASL (gWEASL), naive-SWSL (nWEASL) 94

6.1 Transfer Learning: ESC-50 results . 103
6.2 Accuracy (×100%) comparison for 10 easiest and 10 hardest sounds in ESC-50 . . 104
6.3 Transfer Learning: DCASE16 results . 106
6.4 Transfer Learning: ESC-50 higher level categories 106
6.5 Acoustic Scene - Sound Event Relations through transfer learning 109

8.1 MAP for different cases (~b, ~s and ~hl) . 135
8.2 MAP for different cases for ~vl . 136
8.3 Left: Performance using euclidean distance, Right: Performance using cosine sim-

ilarity . 142

9.1 Results (AP) for Self-Training . 147

xvii

Chapter 1

Introduction

Unlike seeing, where one can look away, one cannot ’hear away’ but must listen ... hearing implies
already belonging together in such a manner that one is claimed by what is being said.

Hans-Georg Gadamer

We begin by quickly defining perception and intelligence, two terms which will frequently occur
in this dissertation. The definition of Perception according to the Oxford English Dictionary is
“The ability to see, hear or become aware of something through the senses”. This perception of
the environment around us leads to human cognition and intelligence. Defining “Intelligence”
is hard, as R. J. Sternberg said (quoted in [Gregory and Zangwill, 1987]), “ Viewed narrowly,
there seem to be almost as many definitions of intelligence as there were experts asked to define
it” [Legg et al., 2007]. However, to take one of the simplest definition from American Heritage
Dictionary [Legg et al., 2007], Intelligence can be defined by “The capacity to acquire and apply
knowledge”. Hence, the idea of perception and intelligence, in simpler words involves observing
and understanding the environment around us and then using that knowledge in our behavior
and interaction with the surroundings.

In this dissertation, we are concerned with machine perception and intelligence. Machine
Perception refers to the idea of machines having capabilities to perceive the environment, similar
to humans and animals capabilities. Borrowing Malcolm Tatum’s words 1, Machine Perception
refers to “the capability of a computer system to interpret data in a manner that is similar to the
way humans use their senses to relate to the world around them”. Artificial Intelligence (AI) or
Machine Intelligence is the process of a machine perceiving the data in different forms and then
taking appropriate decisions to achieve an end goal.

Going back to human perception, vision and sound are unarguably two essential senses for
humans to perceive the world around us. In particular, our focus throughout this dissertation
is on sounds. Auditory stimuli play a critical role in helping us understand and respond to the
environment around us. Due to its significance, sound perception by humans has been widely
studied in the field of Psychoacoustics [Alberti, 2001, Moore, 2012, Plack, 2018]. It studies
both anatomy and the physiology of our auditory system and also the perception of the sound
by our brain. The ear system (outer, middle, inner) first converts the sound pressure waves
into nerve impulses, and then these nerve impulses are carried to the brain stem, where the

1http://www.wisegeek.com/what-is-machine-perception.htm

1

perception happens. Our brain is not only able to recognize the sound but is also capable of
sound localization and association with sources. Altogether, human auditory perception is highly
developed, and in fact, it has been shown that sounds can sometimes suppress visual perception
[Hidaka and Ide, 2015].

Altogether, given the significance of vision and sounds for humans, it is not hard to realize
their importance for artificial intelligence. Hence, AI researches focus a lot on the automated
understanding of visual and audio data. In this work, the focus is on audio data, which can feed
acoustic information to machines. Audio data in the simplest terms are digital representations
of sound pressure waves, waves which are responsible for the auditory stimuli in humans and
animals.

Besides their inherent significances, as noted above, there is one important characteristic of
sounds which gives them a crucial advantage over vision. Sounds are omni-directional, due to
which they often provide information about objects and regions which are outside of our field
of view. We use these additional pieces of information in our interaction with the surroundings.
This advantage over vision makes automated understanding of sounds even more crucial for the
further advancement of artificial intelligence. We expect and need machines to be able to make
sense of sounds. We would expect that machines should be able to listen and recognize auditory
objects, actions, events; and use sound as a source of information in the decision-making process.
The term Machine Hearing has also been used to refer to such capabilities in machines [Lyon,
2010]. Now that we have established the importance of sounds for artificial intelligence, let us
define Acoustic Intelligence in Machines.

We call systems which know about various sounds, associate them with physical objects,
entities or events, can recognize and categorize them, know or able to discover relationships
between them as Acoustically Intelligent . This dissertation aims to develop methods and
algorithms to create technologies which can enable machines to be Acoustically Intelligent.

As far as acoustic intelligence in machines is concerned, sounds in specific forms such as speech
and music have received the attention of machine learning and signal processing community for
quite a long time [Juang and Rabiner, 2005, Schloss, 1986]. Speech is perhaps the most important
mode of communication and research works on their automated understanding and interpretation
have been studied for the past several decades. Isolated digit recognition in speech started as early
as 1952 at Bell Laboratories. In recent years, for Automatic Speech Recognition (ASR), human
parity have been claimed under certain situations [Xiong et al., 2016]. ASR and music retrieval
systems are now part of several devices and applications which are in constant use by millions
of consumers all around the world. However, the same cannot be said about other naturally
occurring sounds in our environment.

As one would expect, the early works on sound events tried to understand the human percep-
tion of them [McAdams, 1993, Repp, 1987, Warren and Verbrugge, 1984]. Soundscape related
works which tried to understand the environment through sounds also had similar motivations
[Carles et al., 1992, Schafer, 1993], that is understanding human perception of sounds. These
works tried to understand and explain human recognition and perception of sounds. For example,
[McAdams, 1993] described stagewise processes for human auditory recognition and identification.

Some of the early works on automatic methods for classification and retrieval of sound events
came in early and mid-1990’s [Feiten and Günzel, 1994, Wold et al., 1996]. The first decade of
21st century saw some more interests in audio content analysis and audio event classification,
primarily in the context of multimedia retrieval and surveillance. The interest in recognizing and
detecting sounds continued to grow, and in last few years it has started to receive considerable

2

attention. We give a detailed account of the literature in this area in a later chapter. The main
driving factor behind the increasing significance of the field has been the numerous applications
automated sound understanding might have. As more and more intelligent systems become part
of our daily life, the role sound of sound in them will become more apparent and obvious. Several
applications are outlined later in this chapter. In the next sections, starting with sound events
and acoustic scenes, we lay down some of the problems in machine understanding of sounds. An
outline of the solutions proposed for the problems is also presented.

1.1 Sound/Audio Events and Acoustic Scenes

In this dissertation document, we will interchangeably use Audio Event and Sound Event to refer
to the same phenomenon. How would one define Sound Event or Audio Event ? Before going
into that it might be a good idea to understand the notion of objectness in sounds.

1.1.1 Sound Objects

Humans are able to identify not only acoustic phenomenon which they are familiar with but are
also able to detect and make sense of those we have never encountered earlier, based only on
how the phenomenon stands out against the background. This ability greatly enables us to form
our own vocabulary of sounds from repetitions of the detected novel phenomena. Cognitively,
it is argued by several researchers that there may be an underlying model of “objectness” that
human (or animal) listeners subscribe to, and that we are able to detect the occurrence of acoustic
phenomena that conform to this notion of objectness [Dyson and Alain, 2004, Griffith and Warren,
2003, Kubovy and Van Valkenburg, 2001].

The concept of an object is itself hard to articulate, and philosophers through time, from
Leucippus and Plato to Kant [Kant, 2003] and Russel [Russell, 1945] have struggled to define
it. Cognitive scientists too have found it difficult to arrive at a precise definition. From a
purely cognitive point-of-view, objects are defined as the bases of experience [Griffith and Warren,
2003]; a definition that conforms with Merriam Webster dictionary’s definition of an object as
“something that may be perceived by the senses”. In effect, by these definitions, objects are
perceptual entities that are fundamentally a function of the sensory processes that perceive them.
Even so, a concrete definition remains elusive, with definitions largely being along the lines of a
composition of parts or percepts [Feldman, 2004, Treisman, 1986].

However, in the physical world, the concept of an object is something all of us are familiar
with, in spite of all the inherent ambiguities (e. g. A door handle is an object, but then so is
a door that it is a part of). To quote American jurist Potter Stewart out of context, “we know
one when we see one”. The word “see” is particularly relevant here – although it is agreed that
the concept of “objecthood” extends to perceptions derived from all senses, the majority of the
discussions and descriptions in the literature have centered on visual objects.

Not surprisingly then, researchers in computer vision have attempted to emulate this human
facility of detecting objects in their visual field. In the context of computer vision, this translates
to detecting objects in digital images, based only on their “objectness”. For computational
purposes, however, they have avoided hierarchical-grouping-based definition of objects such as in
[Feldman, 2004], and work from the simpler saliency-based description given in Alexe et al. [Alexe
et al., 2010]: an image object is defined as something which holds at least one of the following
three characteristics (a) it has a well defined closed boundary in space (b) it has an appearance
which is different from the surrounding (c) stands out as salient or is unique within the image.

3

A significant literature has since sprung up that builds on the concept of objectness to detect
objects in images.

The concept of a “sound object” follows the same rationale as a “visual” object. Sound objects
are distinct acoustic percepts that we distinguish from the background as possibly representing
a cogent phenomenon or source that stands apart from the background. Unfortunately, they too
suffer from the Potter-Stewart syndrome: we know them when we encounter them, but they are
hard to define.

Since objects are essentially cognitive constructs, let us then refer to researchers in auditory
cognition to obtain a definition. From a cognition perspective, sound objects – if they exist – are
sensory entities built upon auditory stimuli; hence, while we refer to “sound” objects in deference
to the fact that these objects are definitive units that we expect to detect in digital recordings of
sound, the literature in cognition refers to “auditory” objects. For want of a convincing argument
to the contrary, we will assume that sound objects are the same as auditory objects.

Even among auditory neuroscientists, we encounter debate and diversity of definition. Breg-
man [Bregman, 1990] rejects the very notion of an auditory object, claiming instead that auditory
“streams” are the fundamental units of the auditory world. More commonly, auditory objects are
associated with sources [Griffith and Warren, 2003]. The flaw in this association is that a source
may produce more than one type of sound; at the same time, a phenomenon that a human may
identify as a sound object (e.g, a snippet of music) may have many sources.

The peripheral auditory system constructs two-dimensional characterizations of sound akin
to “images” [Patterson et al., 1995, Shamma, 2001]. Based on this, researchers such as Kubovy
and Valkemberg [Kubovy and Van Valkenburg, 2001] propose a visual analogy that resembles the
propositions in Alexe et al. [Alexe et al., 2010]: auditory objects are defined as salient phenomena
that lie within clear boundaries in two-dimensional characterizations such as spectrograms. By
this rule, individual formants in a recording would stand out as objects. However, it is ques-
tionable how much the visual analogy can be applied. The fundamental difference is that visual
objects are formed from presence of physical objects, while sound objects result from their ac-
tions. Lemaitre and Heller [Lemaitre and Heller, 2013] studied a taxonomy of everyday sounds
and concluded that sounds produced through “specific actions” are easier to identify compared
to general ones, a characteristic that may be at variance with visual objects.

To reference some more researchers, e.g. [Dyson and Alain, 2004] propose that auditory
objects are formed through the grouping of time-frequency components based on perceptual
expectations. Unfortunately, this definition is simultaneously over generative and over inclusive
– grouping can group parts of what a human would identify as an object as separate; at the
same time a background, which is not an object, too would be grouped. Moreover, segregation
and grouping of time-frequency components may occur at many scales, not all of which conform
to our notion of objects. Other scientists have proposed detection-based definitions, via models
of the cognitive processes that find acoustic objects. Shamma [Shamma, 2001] suggests that
objects are identified from coincident spike discharges in separated auditory nerves, Husain et al.
[Husain et al., 2004] propose that objects may be detected through a hierarchical 3-stage process
in the brain, Griffiths and Warren [Griffith and Warren, 2003] suggest a cascade of processes, and
Adams and Janata [Adams and P., 2002] propose a template-based model for auditory object
detection.

Even though the literature provides many hints, it does not provide a definitive answer to
what a sound object may be, and how it can be characterized in terms that will allow us to
build a computational model. Some of the principles proposed in the literature are, however,

4

useful. Griffiths et al. [Griffith and Warren, 2003] aver that auditory objects must be temporally
restricted. Clearly, sound objects possess saliency, as suggested by Kubovy and Vanvalkemberg
[Kubovy and Van Valkenburg, 2001]. They must stand out against the background.

Beyond these guidelines, we must eventually state a definition of sound objects ourselves.
Besides the perplexities pointed out earlier, we also note that other factors such as overlap,
amplitude, rhythm etc. can create further difficulties in defining sound objects. However, similar
issues such as occlusion, and perspective are also faced in computer vision; these are lateral to
the definition of objects themselves. Possibly the most transparent way to define sound objects
is one alluded to earlier: based on human judgment. Simply stated, our definition will be – if
a human can detect it, it is an object. Pierre Schaefer’s work [Chion, 1983] on sound objects is
one of the early works on the theory of sound objects and our definition of sound objects closely
follows his idea of it.

Sound objects are generally noted to have the first two of the following properties and may
or may not satisfy the third property. (a) They have clear onset time (b) they are acoustically
salient they possess characteristics that distinctly separate them from what listeners may perceive
as background, noise or silence, and (c) the offset time is evident. The relaxation on offset time is
because we find that the onset of a detected object is always noticeable to listeners, whereas the
offset time may not be distinctly noted and has poor agreement rate. The idea of sound events
can be based on the idea of sound objects.

1.1.2 Sound Events

Sound objects, by our convention, are cognitively distinct units. While they may form events or
be constituents of events, they will not themselves be comprised of events. Hence, we place sound
objects as a more fundamental unit compared to sound events. Sound events are more subjective
to human interpretation and even naming conventions. For example, by our convention, a pure
tone is a sound object. However, whether one would call it a sound event or not is debatable.
From the computational modeling perspective, work such as [Gemmeke et al., 2017] even includes
silence as a sound event in the vocabulary. Including the absence of any acoustic phenomena in
the vocabulary, however, makes sense when the end goal is to build a computational model for
detection of sound events.

[Virtanen et al., 2018] describes a sound event as a “specific sound produced by a distinct
physical sound source”. However, as the authors point out, associating a single source to an event
might be difficult in several cases and in fact, what constitutes a source might itself be subjective.
For example, “car passing by” event, may be hard to associate with one source, wheel, engine etc.
are all playing a role in this case. Moreover, the way we “name” a sound can itself be confusing
as far as associations with sources are concerned. For car passing by, we are associating the whole
“car” with the event, rather than the wheels or engines, which one can argue are the primary
sources for this event. Since our goal is computational modeling of acoustic phenomena, we follow
a simple definition.

A sound event is simply a collection of sound objects standing out collectively as a salient
acoustic phenomenon, identifiable and distinguishable by humans. It has salient and well-defined
characteristics which are identifiable by humans, and has an onset and offset time, and of brief time
duration. The identifiability and distinguishability often lead to association with physical sources
and a semantically meaningful name. Examples of sound events are laughter, glass breaking, birds
chirping etc.

5

1.1.3 Acoustic Scenes

Acoustic scenes have much broader characteristics compared to sound events, primarily referring
to the acoustic traits of a whole environment. It is “ entirety of sound that is formed when sounds
from various sources, typically from a real scenario, combine to form a mixture” [Virtanen et al.,
2018]. Acoustic scenes do not only consist of different sound events, but also noises. They often
have complex and long-term acoustic signatures. Examples of acoustic scenes would be, Home,
Beach, Street, Market, etc.

1.2 Acoustic Intelligence in Machines (AIM)

Humans (and possibly other animals) have remarkable acoustic intelligence. We are not only able
to identify auditory percepts with which we are familiar with, but are also able to recognize and
detect sounds for which we do not know the name or source. We are also able to identify a sound
event in the presence of other sound events and noise. Our brain is able to pay attention to an
acoustic phenomenon while managing to filter out others, well known as the cocktail part effect
[Alain et al., 2000, Arons, 1992]. In fact, our ability to find distinct acoustic phenomenon allows
us to build our sound event vocabulary. How humans understand sounds is an active field of
research on its own [Moore, 2012, Zwicker and Fastl, 2013]. In this dissertation, we are concerned
with developing methods which can be used to create such capabilities in machines.

Acoustic intelligence in machines is clearly necessary for the success of artificial intelligence
and building such capabilities in machines is not easy to the say the least. Humans, as stated
before, have capabilities to detect even unfamiliar auditory percepts. Based on that perception,
humans can even make a good estimate of the source, the action on the source producing the
sound, its shape, size, material, and even the environment. We are born with faculties which
helps us achieve such perception capabilities, and we learn the association abilities by observing
and interacting with the environment around us. Hence, having such capabilities in machines is
easier said than done and will require decades of research.

To build acoustic intelligence capabilities in machines, one can argue to take a bottom to top
approach; where we first develop algorithms and techniques for machines to be able to detect
sound objects, without explicitly referring to any semantic name. Associating a given sound
object or collection of them to a semantic name can be done in the next step. The goal, here,
would be to arrive at a computational model which combines cognitive aspects of sound with their
detection through different machine learning and signal processing algorithms. On the surface,
this approach seems extremely meaningful and consequential, as it mimics the human capability
of identifying the even novel acoustic phenomenon in a given audio recording. Given the output
of such a model, the task of label assignment to such segments is the next sub-problem we need
to solve. We might not be able to assign a label to some of the detected objects, but this is an
inherent characteristic of humans as well. Hence, this approach seems fundamental by design.
However, the aforementioned sub-problems are relatively harder to solve.

Despite our definition of the sound objects being computationally motivated, building compu-
tational models to detect a generic sound object is an arcane task. The approach outlined above
is hard to implement in practice. If we consider a music note as a sound object, then we might
have to label every note as a sound object while collecting data for sound objects. In one of our
work, we simply considered a set of sound events as sound objects [Kumar et al., 2014], making
the task of data collection easier. However, this simply falls under the approach we discuss next.
Moreover, the task of label assignment to generic sound objects is again hard to precisely define,

6

especially the granularity at which the labels should be or can be assigned.

Given the above problems, a more direct approach might be better suited and useful for
immediate future. The more direct approach considers a vocabulary of sound events or acoustic
scenes and then develop methods for machines to recognize and detect them in an audio recording
or an audio stream. This approach might seem restrictive at the beginning, where we are focusing
on a small predefined set of sounds, but, is in fact more useful in the direct applications. For
example, being able to recognize and detect screaming and gunshots can be directly useful for
surveillance applications. Moreover, from the machine learning and signal processing perspectives,
directly attempting to recognize sound events seems a better ground to start with. Overall,
detecting specific sound events is perhaps more worthwhile, especially given the fact that this
field is still young and a lot of research is yet to come. The argument of limited size vocabulary
can be further countered by doing recognition and detection at a large scale, where the system is
designed to detect a large number of sounds.

Sound Event Detection (SED) or Audio Event Detection (AED) refers to the goal
of machines being able to detect sound events in an audio recording. To be more precise, the
detection task refers to temporally locating the occurrences of an event in an audio recording.
Hence, detection can give a complete description of a long recording. In Classification or Recog-
nition tasks, on the other hand, we try to classify or categorize the audio recording to one of the
sounds in the vocabulary set. We would like our system to be able to detect and recognize a large
number of sound events, hundreds or possibly thousands.

The first thing we need to state for sound event detection is the set of sound events to be
detected. Which sound events should machines detect? How do we catalog sounds or build a
vocabulary of sound events? Will a manually produced vocabulary suffice? How would a machine
know which sounds it can expect in an environment, say Park. These questions point us towards
commonsense knowledge humans have about sounds. We know how we colloquially refer to a
sound event, in other words, the linguistic terms we use to identify a sound. How would a machine
know about and understand such terms? Over time and with experience, we know what type of
sounds we can expect in an environment. Can we machines learn such knowledge?

The above discussion lays down the motivation and goals of this dissertation. Figure 1.1 shows
acoustic intelligence for machines as envisioned here. It primarily consists of two components, one
with the goal of creating a knowledge-base for sounds and the second which focuses on recognizing
and detecting sound events and scenes. Ideally, the two components should interact with each
other in an intelligent manner which can lead to a better perception of sounds by machines.

Figure 1.2 lays out some problems and methods in each component of AIM. Even though
we believe the interlinking between the knowledge base of sounds and sound event detection is
extremely important for an acoustically intelligent system; this interlinking has not been studied
in this dissertation. Instead, we focus on the individual components and develop methods and
algorithms for different sub-problems within each component.

As expected, recognizing and detecting sound events is one of the primary goals. The par-
ticular focus as far as AED is concerned is on developing methods and frameworks which can
scale audio event detection. However, along with that, machines need to have some commonsense
knowledge about sounds, similar to humans. We obtain this knowledge by continuously observ-
ing, interacting and learning from the environment. We learn names for sounds, often in more
than one language. We associated different sounds together; for example, we know that cheering
and laughing often occur together. Machines also need to have this knowledge, and then only the
detection and recognition of sound events can be more nuanced and useful. In fact, cataloging

7

Figure 1.1: Acoustic Intelligence in Machines (AIM)

sound names should be the first step towards large-scale audio event detection. We need a large
vocabulary to start with for large-scale sound event detection (LASSED).

Hence, natural language understanding of sounds is required, which would involve machine
learning and natural language processing methods for cataloging, interpreting and understanding
sounds. All in all, creating a knowledge base of sounds for machines. The dissertation proposes
solutions for some fundamental aspects of creating a knowledge base for sounds, a research prob-
lem which to the best of our knowledge has not been explored much. From there one, a major
part of the thesis is devoted to scaling audio event detection, where our proposed ideas have not
only made large scale SED viable but have also opened up newer problems which would require
the attention of the research community. In the next sections, an overview of problems and their
proposed solutions is laid down.

1.3 Natural Language Understanding of Sounds

The field of automated understanding of sounds so far has mainly focused on recognizing sound
events and acoustic scenes in audio recordings 2 [Stowell et al., 2015]. However, for machines
to be able to actually understand and interpret various sounds, associate them with physical
objects, entities or events, know or discover relationships between them; we need something
beyond mere recognition of events. A comprehensive knowledge base about sounds is desirable.
This knowledge base, should not only contain a large number of sound categories organized in
a meaningful hierarchy but should also contain other information, such as acoustic relations.
Machines should be able to learn sound event co-occurrence relations, an acoustic scene - event
relations, source - event relations, to name a few. They should know different names for the same
sound, for example, glass shattering and glass breaking refers to the same acoustic phenomenon.
These are important as machines can have sound understanding capabilities similar to humans

2http://dcase.community/

8

Figure 1.2: Acoustic Intelligence in Machines

only if they have some linguistic grasp of how we understand and interpret sounds. It must learn
the word phrases that identify sounds, associate sounds with these identifiers and then be able
to learn to recognize and categorize them.

It is fairly easy to register that this will require us to develop methods using machine learn-
ing and natural language processing. Surprisingly, there has been no work, to the best of our
knowledge, which focuses on automated methods for mining sound related knowledge on a large
scale.

The first requirement for this commonsense knowledge about sounds is to understand how we
“name” sounds. To put it differently, we need an extensive list of sound events or methods to find
such sound names and then use those for extracting higher-level semantic knowledge. This step
is also necessary to create a large vocabulary of sounds for LASSED. A sound comprehension
engine must possess a comprehensive catalog of sounds that one may recognize in recordings.
Except for a few hand-curated lists, no such large list of sound events, organized in any manner
exists. Given the large number of sounds which we hear and recognize and the variety of ways we
might refer to the same sound, creating an exhaustive list of sounds manually will be a tedious
process, to say the least.

To develop methods for creating a large sound event catalog, we need to consider language and
semantics as they play roles in how we describe or name a sound event. The general problem is
to build algorithms which can help machine discover the sense of audibility in a given phrase. For
example, phrases such as glass breaking, birds chirping, immediately signal a notion of audibility
in our mind. This applies for short phrases such as glass breaking as well as longer phrases which
can be a whole sentence. For example, a long sentence such as, The fast running car turned right
and hit the wall, also brings out a scene in our mind which has acoustic components in it.

We define phrases which carry a notion of audibility in it as Audible Phrases. However, for the
purpose of cataloging sound events, unigram and bigram phrases are of more immediate concern,
and they will be the focus of our attention. Examples of such phrases include laughter, music,
birds chirping, honking.

We propose to automatically create such a catalog of sound events by mining a large text cor-
pus. We parse textual web data to identify audible phrases based on their patterns of occurrences

9

and semantics. Put succinctly, we introduce the idea of text-based understanding of sounds, with
the goal of developing methods to extract sound related knowledge from text. Other modalities
such as images can also play a role here, even though we have not explored this aspect in this
work.

We propose methods which search for potential sound concepts or sound event names in an
unsupervised manner, or with minimal supervision. Our method is simple, yet highly effective.
It relies on simple pattern search and then parts of speech tagging. More sophisticated methods
can be used, provided more supervision in terms of human labeling is possible. We end up with
a catalog of over 100,000 sound events, currently the most extensive known vocabulary of sound
events. Once we have this extensive list, we then show how they are useful in automatically
extracting higher-level semantic relations. More specifically, we develop methods for finding the
acoustic scene and events relations. For a given acoustic scene, we try to find sound events which
one can expect to find in that scene or environment. For example, it is common sense knowledge
for humans, that we can expect to hear sounds like Children Laughing, Birds Chirping, Footsteps
etc. in a Park. Our work is the first one to show that such relations for sounds can be learned
through text, paving the way for a knowledge base for sounds [Kumar et al., 2017b].

1.4 Large Scale Sound Event Detection

Even though the field of sound event classification and detection has only recently started to
attract significant attention, the importance of audio content analysis was realized early on [Feiten
and Günzel, 1994, Wold et al., 1996]. From around mid-2000’s, there has been a steady flow of
research works on sound event detection, even though the volume has been small. Most of
them focused on developing a variety of machine learning and signal processing techniques for
recognizing sound events in audio or video recordings. Primary applications motivating the works
were the content-based retrieval of multimedia [Kiranyaz et al., 2006] and surveillance [Clavel
et al., 2005b]. A comprehensive study of the current literature is provided in later chapters.
However, a quick look at it will reveal that these works are severely limited in scale and scope.
Several factors could be attributed to these limitations. The first one is the absence of a large
meaningful vocabulary of sound events. We outlined this issue and solutions in the previous
section.

However, a bigger challenge exists, the challenge of labeling audio recordings. Obtaining
labeled data is a requirement for any supervised machine learning solution including sound event
detection. However, this reliance on well-labeled data is the biggest impediment to scaling SED.
We address two problems concerning labeling issues in this dissertation, first one for model
training and the second one during evaluation. Scaling AED is a major theme of this dissertation,
and our proposed ideas and methods have turned out to be vital in scaling sound event detection.

1.4.1 Labeled Data Challenge

Large scale labeled datasets have played a critical role in the recent success in several fields
such as image object recognition and speech recognition [Amodei et al., 2015, Deng et al., 2009,
Hannun et al., 2014, Krizhevsky et al., 2012]. Moreover, it is well known and understood that
learning algorithms generalize much better with large datasets and in a large number of cases the
performance can be improved merely by training on large datasets [Banko and Brill, 2001].

Deep learning methods have been successful primarily due to the availability of large labeled
datasets. However, the lack of large scale datasets for sound events, have for long been the limiting

10

Table 1.1: Some Public Datasets of Sound Events

Dataset # of Events Information

Urbansounds 10 ∼ 45-50 min per event, but clips have 90% overlap

ESC-50 50 3.33 min per event

DCASE 2013 16 24 short clip per class

DCASE 2016 18 Total audio data ∼ 60 min

FBK-Irst 16 Total audio data ∼ 1.7 hours

DARES Descriptive Events Total 2 hours audio data

factor in SED. The principal reason behind this problem is the extreme difficulty in annotating
audio recordings.

Producing labeled data for supervised learning usually requires a human annotator to mark
the beginnings and ends of an audio event in an audio recording. It is not only an immensely
time-consuming process but also a costly affair. As a result of which, the amount of labeled
data available for any sound event in most datasets is usually very small. Moreover, the arduous
labeling process is too resource intensive to do for a large number of sound events. Hence, it leads
to small vocabulary sound event datasets, often the number of sound events in the datasets are
limited to something between 5 and 20. This can be observed in most of the publicly available
datasets for sound events.3

Table 1.1 shows basic information about some public datasets to illustrate this. The amount
of audio data available per event are very small. In fact, in most cases, only a few minutes of
audio data per event is available. Another sound event dataset [Heller et al., 2009] has examples
of sounds falling under different broad categories such as impact sounds or rolling events. Here
also the number of examples are very few in each case.

This lack of labeled or fully supervised data creates major challenges in the learning process.
Especially, as is evident from other fields, the larger the data, the better it is. Labeling audio
recordings is a naturally burdensome task, and not much can be done about it. What we can
instead do, is to develop algorithms which can get around it; methods which rely on manual
annotation efforts to the least possible extent.

We introduce audio event detection using weakly labeled data or in other words, weakly
supervised learning of audio events. Fully supervised learning requires labeled audio recordings
in which time stamps of occurrences of the events are given. The time stamps allow one to
extract out parts of the audio which contain the event of interest, and then use that as positive
examples for that event, while using the rest as negative examples. This process is necessary for
fully supervised learning where labeled examples of an event would be needed. We refer to the
labeled data with time stamps as Strongly Labeled data.

We proposed and showed that the audio event detects need not rely on these strongly labeled
data; instead, we trained models for AED using audio recordings for which only weak labels
are available [Kumar and Raj, 2016b]. In Weakly Labeled data, labels are available only at
recording level. Recording level labels imply only the presence or absence of an audio event is
known, the time stamps of occurrences or even the number of occurrences of the event are not
available.

Learning from weakly labeled data offers several advantages. Firstly, creating weakly labeled
data is much easier compared to strongly labeled data. It requires significantly lesser effort,

3Audioset: A large-scale sound event dataset, released in April 2017, will be discussed eventually.

11

and one need not go back and forth in the recording to mark the beginnings and ends of the
event. Second and the more significant advantage is that weak label learning shows us a way to
exploit the audio data from the web. Most of the audio (multimedia) data on the web have some
associated metadata which can be used to infer their weak labels automatically. Hence, if weakly
supervised learning of sound events is possible, then the whole manual (labeling) factor can be
removed from the learning process.

Our approach for building audio event detects from weakly labeled data is based on the
Multiple Instance Learning (MIL) framework [Dietterich et al., 1997]. We formulate the problem
of AED using weakly labeled data as a MIL problem and show that the MIL framework can be
successfully used to train audio event detectors with only weak labels.

Next, we address AED using weakly labeled data on several fronts. We propose scalable
multiple instance learning methods to tackle the issue of scalability, with which several MIL algo-
rithms suffer. The scalable MIL methods not only improve training times by orders of magnitude
but also leads to improvement in the performance.

AED with weak labels shows a way to obtain large amounts of training data, and hence,
we next move into deep learning methods for AED. We propose several methods for training
deep neural networks (DNNs) using weakly labeled data. We also show that these deep learning
models can be used for transfer learning, which can be very helpful for situations where large-
scale datasets might not be available. Subsequently, we try to analyze challenges associated with
weakly supervised learning, especially when training from weakly labeled audios obtained from
the web. More specifically, we look into “label noise” problems in web crawled audio data.

Weakly supervised learning (WSL) presents certain challenges of their own, especially when
working with data obtained from the web without any manual supervision. Label noise and
Signal Noise needs to be addressed in the learning process. To address these challenges to a
certain extent, we propose a novel unified learning framework called Weakly and Strongly Labeled
(WEASL) learning [Kumar and Raj, 2017a]. In this unified framework, we show that one can
learn simultaneously from strongly (supervised) as well as weakly supervised exemplars. Our
main idea behind WEASL is that it can be cast as a constraint form of semi-supervised learning.
It allows us to exploit labeled data in both forms and we empirically show that a small amount of
strongly labeled data can give a substantial improvement over only weakly supervised learning.

1.4.2 Evaluation of Models on Large Scale

Machine learning methods to reduce the need for labeling resources in the training phase have
been in the focus of attention of researchers for a long time. These methods include unsupervised,
semi-supervised and active learning [Friedman et al., 2001]. However, in machine learning, the
evaluation of trained models for any classification task is almost as critical as the training step.
For example, the trained event detectors trained must be appropriately evaluated on an unseen
test set for a well-rounded understanding of the training algorithm.

Evaluation on a large scale is necessary to understand the generalization capabilities of the
algorithm better. The problem, however, is that evaluation of trained models also needs labeling
resources. We need ground truth for the test set, and this can turn out to be a severe limitation
when we would like to estimate the performance of the system on a huge unseen test set. For
example, one may wish to deploy a text categorization system to categorize billions of web pages.
In other situation, one may want to evaluate an audio/multimedia event detection system on
millions of videos from YouTube. Clearly, labeling a large chunk of these massive test sets is
almost impossible. At best only a small percentage of test points can be labeled to estimate

12

the performance. In other cases, we might have to actively evaluate classifier as test data keeps
coming in.

The problem outlined above makes us wonder about the best ways to evaluate our trained
models when the labeling budget for is small. The goal here is to select instances from the test set
for labeling, in an intelligent manner such that the performance estimated on this smaller set is
as close as possible to the one on the whole set. Stated differently, we would like to estimate the
“true accuracy” using as little labeling resources as possible. This problem might appear similar
to active learning, where instances are selected for labeling so that the newly labeled instances can
be included in the training set, which consequently is expected to lead to better generalization.
However, the goal in the evaluation phase is very different from that during training. In instance
selection for evaluation, the objective is to precisely estimate the performance of an already
trained classifier on a given test set using minimum labeling resources. How the classifier was
trained, or the training algorithm itself is immaterial. Due to this difference in objective, it is
not possible to directly port methods from active learning.

We propose methods to estimate classifier accuracy on large-scale test sets under restricted
labeling budget [Kumar and Raj, 2018a]. The methods are based on stratified sampling [Cochran,
2007]. We show that the variances of the estimated accuracy, using methods based on stratified
sampling are much lower compared to that using the naive method of randomly sampling instances
and labeling it. This means that the proposed methods lead to a more precise estimation of
accuracy for a fixed labeling budget. In other words, the amount of labeling resources required
to estimate accuracy accurately is reduced by a significant amount (as much as 60% in certain
cases).

1.5 Applications

Given the significance of sounds in our interaction with the environment and it is no wonder
that recognizing and detecting sound events is critical to several applications. One of the most
important and direct applications of sound event detection is in the content-based retrieval of
multimedia data on the web. The amount of consumer-generated multimedia data on the internet
has grown almost exponentially in recent times. Popular multimedia websites such as YouTube,
gets hundreds of hours of multimedia recordings uploaded on it every minute. There are several
such sites on the internet today, each of which attracts similarly large amounts of data. The
recordings are mostly unannotated; descriptions if any are limited to simple high-level metadata
such as the author, or a brief legend indicating the overall content. Often the legends themselves
are cryptic and uninformative to the uninformed, e.g. “My favorite clip”.

In order to be able to organize, categorize, summarize and index these recordings such that
they can be retrieved through meaningful queries, one requires analysis of their content. Given
the somewhat spotty nature of the metadata, the description of the content must usually be
automatically obtained. This naturally requires automatic identification of the objects and events
that occur in the recording. Multimedia recordings have both video and audio components.
Often, the sounds in the recordings carry information that the video itself may not. Thus, not
only the visual objects in the recordings be automatically detected, it is also important to detect
the sounds that occur in them. This makes audio event detection extremely important for the
content analysis of the multimedia data on the web. Several works have tried to incorporate
information from audio for multimedia content understanding [Ayari et al., 2011, Jiang et al.,
2010, Kiranyaz et al., 2006, Wold et al., 1996, Ye et al., 2012]. Detection and captioning of sounds

13

in YouTube videos have also been done 4 [Wang et al., 2017]. Audio event detection has also
been used in sports video analysis [Xiong et al., 2003b].

Another early application of audio event detection has been in surveillance [Atrey et al., 2006,
Clavel et al., 2005b, Valenzise et al., 2007]. Capturing audio for surveillance purposes is much
easier, it travels through obstacles and unlike vision-based surveillance does not require a “line
of sight”. Hence, audio-based surveillance can be done with much ease, provided automated
methods for audio content analysis is available. Sound events such as Gunshots, Screaming etc.
were of particular interest in the early works on AED for surveillance.

In recent years, however, the scope of applications of sound understanding has widened and
gone beyond multimedia retrieval and surveillance. Voice-based personal assistants have gained
considerable importance, and millions of such devices are being used every day. These devices are
continuously analyzing audio, mostly speech, to provide the user with the desired information.
As these assistants become ubiquitous and their use cases in our daily life grow, they will have to
rely on sounds beyond speech to be useful for us. 5 This is natural, as humans rely on sounds and
hence it is expected that intelligent devices will also have to rely on sounds to better understand
the context and generate appropriate answers. In fact, such devices are already being developed
and used by consumers 6.

In general, sound understanding is expected to play a more prominent role in human-computer/robot-
interaction [Janvier et al., 2012, Maxime et al., 2014, Ren et al., 2017]. Robots can interact
naturally with people and the environment only if it has listening capabilities as well, which will
feed acoustic knowledge to the decision-making process in it.

Smart homes, smart cities, smart hospitals can all benefit from understanding and recognizing
sounds. Sound event detection has already found its way in smart homes. Recognition of sound
events such as window breaking, smoke alarm, dog barking etc. have found use cases in smart
homes [Virtanen et al., 2018]. More uses of sound based context recognition for smart homes are
on the works.

Smart cities are another major area of applications for automated sound analysis. Smart
city applications have been a major motivation behind studies on urban soundscapes and scene
classification tasks. Bello et. al. (in Chapter 13 [Virtanen et al., 2018]) points out several
applications of automated analysis of urban soundscapes. One such application is in autonomous
vehicles which clearly will form an important component of the urban environment when they
become prevalent around us. Other major applications include audio based surveillance and
noise monitoring. Human monitored surveillance is hard to do, especially since the demand
for surveillance is growing. Hence, automated surveillance is becoming increasingly important,
and audio is going to play a critical role in automated surveillance systems [Rabaoui et al.,
2008, Valenzise et al., 2007]. Monitoring noise pollution in an urban environment is extremely
important as it can lead to a variety of health issues. Under these circumstances, concrete efforts
are being made by the research community to use automated sound understanding methods
for noise monitoring. Automated understanding of sounds has also been shown to be useful in
geotagging or more specifically city identification [Kumar et al., 2017a].

Self-driving cars or autonomous vehicles, in general, are yet another domain where sounds
can be useful. Sensors to recognize sounds such as siren are an integral part of several self-driving

4https://ai.googleblog.com/2017/03/adding-sound-effect-information-to.html
5http://blog-idcuk.com/sound-recognition-as-a-key-strategic-technology-for-artificial-intelligence/
6https://www.audioanalytic.com/audio-analytic-partnership-hive/

14

Predicted Class
True Class Positive Negative Total

Positive True Positive (tp) False Negative (fn) p
Negative False Positive (fp) True Negative (tn) n

Total p’ = tp + fp n’ = fn + tn N

Table 1.2: True Condition and Prediction by Classifier

cars78. Sounds in autonomous vehicles can be used where omnidirectional nature of the signal
needs to be exploited, such as cases where vision will fail to provide any information. This
includes incoming traffic, emergency vehicles, incoming calls [Virtanen et al., 2018].

Health care is another area where the automated understanding of sounds has high application
potential. Specific applications of audio analysis in smart hospitals and assisted livings including
fall detection using audio, monitoring elderly and disabled persons using sound analysis [Abdoune
and Fezari, 2014, Cheffena, 2016, Fleury et al., 2008, Khan et al., 2015, Litvak et al., 2008, Popescu
et al., 2008], respiratory event detection [Coyle et al., 2007].

Just as sounds are crucial for humans, they play an important role in the life of other animals
as well. Sounds are one of the most direct ways by which animals communicate with each
other. This leads to applications in wildlife and animal habitat monitoring. Perhaps the most
important one is of bird classification and recognition using their sounds [Stowell, 2018, Stowell
and Plumbley, 2014, Stowell et al., 2016]. It can further be used to study their migratory habits
as well. Terrestrial and marine animals monitoring using their sounds have also been shown to
be successful [Fristrup and Watkins, 1993, Gunasekaran and Revathy, 2010, Lynch et al., 2013,
Mitrovic et al., 2006]. A recent 9 work from Microsoft have shown promise of Elephant monitoring
using sounds.

In this section, we pointed out some of the applications where the development of acoustic
intelligence in machines are expected to play important roles. The demand for machines to be
acoustically intelligent will grow as AI gets more integrated into our daily life. The research field
of automated sound understanding is still young, and as it grows up, more applications will come
into the picture.

1.6 Performance Metrics

In this section, we give an overview of different performance metrics which will appear in this
dissertation. We provide only a brief description of all metrics and request the readers to refer to
the following works for more detailed descriptions [Buckley and Voorhees, 2004, Fawcett, 2004,
Irsoy et al., 2012].

Let C be the classifier for which we are computing the performance, and N be the total number
of instances in the test set. Table 1.2 shows the true condition and prediction possibilities. True
positive (tp) is the total number of instances which are predicted as positive class and are also
from the positive class. False positive (fp) on the other hand are those instances which are
predicted as positive but actually belong to the negative class. True negative (tn) represents the

7https://medium.com/waymo/sounds-of-the-self-driving-car-c26f30fcf76c
8https://www.technologyreview.com/s/604272/a-sense-of-hearing-could-make-cars-safer-and-more-reliable/
9https://news.microsoft.com/on-the-issues/2018/08/09/can-sound-help-save-a-dwindling-elephant-population-scientists-using-ai-think-so/

?utm_source=li&utm_source=Direct&utm_medium=organic&utm_campaign=cmg_as

15

https://news.microsoft.com/on-the-issues/2018/08/09/can-sound-help-save-a-dwindling-elephant-population-scientists-using-ai-think-so/?utm_source=li&utm_source=Direct&utm_medium=organic&utm_campaign=cmg_as
https://news.microsoft.com/on-the-issues/2018/08/09/can-sound-help-save-a-dwindling-elephant-population-scientists-using-ai-think-so/?utm_source=li&utm_source=Direct&utm_medium=organic&utm_campaign=cmg_as

total number of instances for which true and predicted class are both negative. False negative
(fn) on the other hand are those negatively labeled instances which for which the prediction by
the classifier is positive class.

False positive and false negative are errors whereas true positive and true negative represent
correct predictions. The accuracy and error rates are defined by

Accuracy =
tp + tn

N
(1.1)

Error =
fp + fn

N
= 1−Accuracy (1.2)

The true positive rate and false positive rates are defined by TPR = tp
p and FPR = fp

n .
The performance of a binary classifier is often evaluated by Receiver Operating Characteristic
(ROC) curves [Fawcett, 2004]. ROC curves are obtained by plotting TPR vs FPR at different
detection thresholds. The area under ROC curves (AUC) is used as a single metric to characterize
ROC curves. The simplest interpretation of AUC is that it represents the probability that the
classifier will rank a randomly chosen positive example higher than a random negative example.
The higher the AUC the better it is. The AUC for a perfect classifier will be 1.0 and 0.5 for a
random classifier.

Similar to ROC curves, sometimes precision-recall curves are also used. Precision is defined as
tp/p′ and recall by tp/p. Precision essentially measures how precise the classifier is in its prediction
of the positive class whereas recall measures what fraction of the positives are correctly predicted
by the classifier. The area under precision-recall curves are also higher for better classifiers.

Another type of curve often used are error curves [Martin et al., 1997]. Detection Error
Tradeoff (DET) curves plot error measures on both axes, missed detection rate on the y-axis
and false positive rate on the x-axis. Miss detection rate is simply 1 − TPR or the fraction of
positively labeled instances which are not correctly predicted by the classifier. Often, the axes
are scaled in DET curves for better visibility. The area under the DET curves are desired to be as
low as possible, the lower the better. The area under the DET curve for a random classifier will
be 0.5. Another metric widely used to characterize DET curves is the Equal Error Rate (EER).
EER is defined as the value when the missed detection rate and the false positive rate are equal.

The last measure which will figure in this thesis is average precision (AP) [Buckley and
Voorhees, 2004]. The average precision is a ranked measure metric. AP of a ranked list is given
by

AP =

∑N
i=i P (i)I+(i)

N+
(1.3)

where N+ is the number of positive instances in the test set, I+(i) is an indicator of whether
the ith test instance in the ranked list is a positive instance for the class. P (i) is the fraction
of the top-ranked i instances which are positive or in other words precision measure for the top
i instances. Note that average precision depends on the class prior and hence the numbers can
often be low if the class priors are low.

1.7 Organization

The organization of this dissertation document is as follows. In the next chapter, we introduce
natural language understanding for sounds. We first describe methods for finding audible phrases

16

or cataloging sound event names. Then we discuss how higher-level semantic relations for sounds
can also be extracted from a large text corpus. In Chapter 3, we introduce weak label learning
for sound event detection. We describe our method and then present empirical results to show
that the AED using weakly labeled data is possible. Chapter 4 discusses deep learning methods
for audio event detection using weakly labeled data. More specifically, we describe convolutional
neural networks based approaches for AED using weakly labeled data. Towards the end, we also
discuss factors which affect learning from weakly labeled data. Chapter 5 introduces another
novel learning framework for weakly labeled data. In this chapter, we describe a unified learning
framework where we try to learn simultaneously from weakly and strongly labeled datasets. The
problem is formulated as a constraint form of semi-supervised learning, and then we propose a
graph-based solution to the problem.

Chapter 6 takes deep learning for sound events further by presenting transfer learning methods
based on our deep learning model. We show that on tasks where large datasets might not be
available, features extracted from deep models can lead to the state of art results on the given
task.

Chapter 7 then changes gear to the evaluation phase, where we discuss the problems of large-
scale evaluation under a limited budget. We show how our proposed methods can reduce labeling
budget by as much as 60% for precise estimation of the accuracy of a trained classifier. Chapter
8 and 9 then look into the future of sound event detection. We talk about some examples of
systems and applications of automated sound analysis in Chapter 8, and then we conclude in
chapter 9, discussing some future works along the way.

17

Chapter 2

Natural Language Understanding of
Sounds

A versifier arranges sounds; a poet arranges meaning in the sounds.

Dejan Stojanovic

Language is one of the most distinguishing factors between animals and us humans, the most
intelligent species on earth. The role of language in intelligence has perplexed philosophers,
rattled behavior and neuroscientists, consumed psychologists, and dazed computer scientists.
Over the years, several works in these areas have tried to understand the relation and importance
of language to human cognition and intelligence [Dennett, 1994, Donald, 1993, Lupyan, 2012,
Russell and Norvig, 2016]. Our thoughts, understanding, and response to the environment around
us, are all build around the language(s) we speak. It is then understandable that language plays
an essential role in the human understanding of sounds as well; and hence, in this chapter of
Acoustic Intelligence in Machines we develop methods through which language can help in the
automated understanding of sounds.

2.1 Introduction

An acoustically intelligent system is expected to know about, listen, understand and meaningfully
interpret sounds. Mere classification and recognition of sound events are not sufficient, as a matter
of fact, classification and recognition itself are incomplete without a linguistic understanding of
the sounds. This holds true for visual perception as well.

In the field of computer vision, it is noticeable that it has advanced beyond the mere recogni-
tion of a few visual objects. Object detection in vision has been successfully scaled to thousands
of visual object categories [Deng et al., 2009]. Moreover, these thousands of categories are often
organized into a hierarchical structure which allows higher level semantic analysis. Visual con-
cept ontologies 1 have been proposed to enhance the semantic understanding vision can provide.
Systems such as Never Ending Image Learner (NEIL) [Chen et al., 2013b] not only detects thou-
sands of visual objects and scenes in images but is also designed to find a variety of commonsense

1http://disa.fi.muni.cz/results/software/visual-concept-ontology/

18

Figure 2.1: Natural Language Understanding of Sounds: Sub-problems we study.

visual relationships. One such visual relation is the similarity between two objects; for exam-
ple, Umbrella looks similar to Ferris Wheel. NEIL aims to learn such relation in a continuous,
never-ending fashion. The motivation is to create a visual knowledge base, similar to what Never
Ending Language Learner (NELL) [Carlson et al., 2010] does by mining textual web data.

Another architecture, EventNet [Ye et al., 2015] is tailored towards multimedia content. It or-
ganizes 500 multimedia events using over 4000 visual concepts. Unarguably, these visual relations
and ontologies are crucial for a semantics-driven search of multimedia data on the web. Besides
these, the integration of vision and language is actively investigated in the other learning tasks as
well. Generating natural language captions and descriptions of images is one such problem, and
it has received considerable attention in the last few years [Karpathy and Fei-Fei, 2015, Xu et al.,
2015a]. The problem generalizes to narration generation for videos [Donahue et al., 2015]. Visual
Question Answering (VQA) [Antol et al., 2015] is yet another task which integrates language and
vision. This coupling between language and vision is crucial if we want to have visual intelligence
beyond recognition of a few visual objects in images.

Similar advancement is expected for sounds. We outlined and emphasized on this need previ-
ously in the introductory chapter (Section 1.3). Besides being able to recognize a large number of
sounds and machines should also have semantic knowledge about sounds. In fact, the two tasks
are interlinked with each other (Figure 1.1), and are expected to aid each other.

A critical aspect of this interlinking is the vocabulary, or the set of sound events machines
should be aware of. How do we build a vocabulary of sounds? Is a handcrafted list sufficient?
Perhaps not, considering the wide variety of sounds we hear and the different ways in which we
express sounds. Second, and perhaps more important, how would machines gather common sense
knowledge about sounds. For example, the fact that honking, beeping and engine running can
all be related through one common source car. Scene - Sounds is another significant acoustic
relation, which can be very useful for audio based context recognition systems. An acoustic
scene Park, consists of sounds events such as children laughing, birds chirping, footsteps etc. is a
commonsense knowledge, but how would machine learn these relations automatically.

Figure 2.1 shows an outline of what we aim to achieve by proposing to introduce natural
language understanding of sounds. We introduce a text-based understanding of the sounds by

19

proposing methods to mine sound related knowledge from textual data automatically. To the best
of our knowledge, this is the first instance of work on a large scale text-based understanding of
sounds. The first step focuses on the vocabulary of sound events, which we alternately, also refer
to as sound concepts in this chapter. The vocabulary of sounds events in the current sound event
detection literature is usually very small. More importantly, if we aspire to create a knowledge
base for sounds, we need to start with being able to find phrases which carry a notion of audibility
in it. Once we can successfully discover such phrases in the text, we look into methods for mining
other commonsense acoustic knowledge. Specifically, we propose methods to find sound events
which might occur in a given acoustic scene.

2.1.1 Related Works

Over the years, several handcrafted taxonomies of sounds have been proposed. Several of these
taxonomies study environmental sounds in the context of soundscape research and contains a
small number of sounds categorized in different groups. One of the most important studies in this
area has been by Schafer, who also coined the term “Soundscape” [Schafer, 1993]. Schafer divided
sounds into 6 broad categories, Natural, Human, Society, Mechanical, Silence, and Indicators.
Gaver [Gaver, 1993] did another important work on the human perception of natural sounds.
Here, sounds are studied from the perspective of sources and actions, or interactions between
materials. The interaction between materials is taken as the basis of categorizing sounds. Some
other works related to the taxonomical categorization of environmental sounds are [Brown et al.,
2011, Raimbault and Dubois, 2005, Salamon et al., 2014]. One useful taxonomy of urban sounds
comes from [Salamon et al., 2014], which also provides a dataset for urban sound events. However,
there is no clear consensus on building such taxonomies, and in most cases, they are based on
subjective opinions. Moreover, in several of these urban taxonomies, a large part of the taxonomy
is made up of broad categories, and the number of low-level sound concepts is once again small.
Other sound events dataset such as [Burger et al., 2012, Piczak, 2015b] are also sources of small
lists of sound events.

Audioset [Gemmeke et al., 2017], released in 2017, is a large scale sound events dataset.
Along with an ontology of sound events, it also provides labeled examples for over 500 sound
events. Audioset, once again a handcrafted list, also organizes the set of sound events in a
meaningful hierarchy. A well-structured hierarchy is not only helpful in the systematic recognition
of sound events but also helps in the labeling process. Audioset consists of 7 categories at the top,
Human Sounds, Animal Sounds, Natural Sounds, Music, Sound of things, Channel-Environment-
Background, Source-Ambiguous Sounds. A total of 632 audio events are listed in Audioset, and
labeled examples are provided for 527 sound events. The ontology provides a simple name for
the sound event and also a short description of the sound event.

The motivation behind Audioset, is primarily to create a large dataset for audio event de-
tection, along the lines of Imagenet [Deng et al., 2009] for image object recognition. Several
factors were kept in mind while developing the ontology, such as sound concepts which were not
distinguishable by listeners were merged into one category. The sound event names were also
modified for convenience and brevity. For example, walking on leaves simply became walking.
However, this can broaden the scope of the event to a considerable extent. Walking on leaves is
very different from the sound of walking on wooden floor.

Even though Audioset is relatively much larger compared to other ontologies and datasets, it
is tiny compared to the vast number of sounds we encounter every day. Moreover, often we refer
to the same sound phenomena in different ways, which again limits the utility of a predefined

20

small set of sounds like Audioset. Especially, considering that our goal is much broader and
larger, which is to have a knowledge base of sounds. Hence, handcrafted lists and ontologies will
not suffice, and we need methods which can automatically find phrases which have “audibility”
in it. These automatic methods can also help create ontologies which can be further employed in
other problems related to sounds. It can also help us find multiple ways of describing the same
acoustic phenomenon, e.g glass breaking and glass shattering.

Hence, we introduce a text-based understanding of the sounds, by describing methods to mine
sound related knowledge from textual data automatically [Kumar et al., 2017b]. We first address
the problem of finding sound concepts in a text and then show a way to use those for establishing
higher level semantic knowledge.

We describe methods which employ natural language processing and machine learning tech-
niques on a large corpus of text for automated discovery of sound concepts. Our general approach
is first to generate plausible “candidate” descriptions based on structural and common sense rules
and to subsequently “filter” and “refine” the candidate lists based on a variety of classifications
and filtering strategies. Under this general framework, we propose a simple yet effective unsu-
pervised approach, based on Parts of Speech (POS) tags for discovering sound concepts. We then
follow it by proposing a word embedding based supervised method for classifying a given text
phrase into a sound phrase (concept) or a non-sound-phrase (non-sound-concept). Through this
supervised method, we obtain a classifier which can identify the notion of audibility in any given
text phrase.

Once we have an extensive list of sound events, a variety of other problems related to sounds
can be solved. We propose methods for one specific type of relation, namely, events which are
found in a scene. To make it more precise, we give a method for automatically describing an
acoustic scene or an environment through sound events we might hear in that environment.
Learning such scene - events relations can be beneficial in creating sound ontologies.

2.2 Audible Phrases or Sonic Phrases

We define Audible Phrases or Sonic Phrases as phrases which express a perception of audibility
in it. The way we describe or name an acoustic phenomenon can vary depending on speaker and
context. There are words which inherently refer to a sound, onomatopoeic words, for example,
murmur, laugh, clap, chirp etc. However, beyond these words, sounds are often expressed in an
intricate and complex manner. Often, we try to refer to the production process while naming
or describing any sound. However, this complicates things as the production of sounds can be a
complex process. This is very different from visual objects which are defined by their presence.
Sounds, on the other hand, are results of actions and interactions between objects. The type of
sound produced depends both on the physical object(s) as well as the action on the object(s)
(or interaction among the objects). Metals clinking and Metals scraping are two very distinct
sounds, even though metal is involved in both cases. Similarly, wood falling and glass falling are
two very distinct sounds, even though the same action falling is involved in both cases.

While we have these short phrases representing sounds, sometimes longer sentences carry a
notion of audibility in them. As an example, the sentence The car took a sharp turn and then
crashed into the wall, clearly triggers audibility in our mind.

Our focus in this work is on developing methods which can automatically mine sound concepts
or sound event names, rather than finding the possibility of audibility in longer sentences. This
is of more immediate concern, more so because there is no other work on automated methods for

21

finding audibility in texts.

2.2.1 Finding Audible Phrases: Cataloging Sounds

As mentioned before, the context plays an important role while describing sounds, which can
further complicate their discovery through automated methods. To illustrate some of the ways
by which sounds are described, we start with onomatopoeic words. An onomatopoeic word is
fundamentally a sound word and represents an acoustic phenomenon on their own. Clearly, we
would like to have these words in our catalog. Examples of such words are, Splash, Giggle, Bark
etc.

In other cases, a direct belief of sound might not be apparent from the textual phrase on its
own, but the phrase is either a source of or associated with a well-understood sound. In several
of these cases, only the source or the object involved in the production of the sound is used to
represent the sound. For example, it is very common to say, I heard the sound of a jackhammer,
or door, or dog, car.

Moreover, sometimes action words such as breaking (e.g glasses breaking), clinking (e.g metals
clinking) are added to denote sounds. From these examples, it is easy to understand that the
automated generation of sound concepts is a non-trivial problem. Moreover, the automated
generation of sound - descriptor phrases are confounded by the fact that they are often composed
of words that by themselves may have no direct relation to sound. For instance, “Children in a
playground” and “Garage door” have sound signatures, but this is not obvious from inspection
of their constituent words. The associated activities that result in the sound are implicit and
unstated. These subjective ways of expressing the sounds makes the problem harder.

However, phrases in such forms are often used as labels for sounds and appear in several audio
event databases, and we must find ways to find such phrases automatically. So we propose an
unsupervised method of obtaining sound concepts from a large text corpus.

2.2.2 Unsupervised Cataloging of Sounds

Our main idea of finding sounds in texts or generating a vocabulary of sounds from the text is
a two stage process. In the first stage, we generate potential candidates for the vocabulary, or
phrases which are potentially audible. This step is expected to be very simple and can lead to
several spurious results in the list. The second stage is the filtering stage, where we filter the
phrases obtained in the first step. This filtering can be a supervised or an unsupervised process.
Figure 2.2 shows the method with unsupervised filtering. The method is based on the idea that,
more often than not sound concepts are mentioned in certain specific ways. These patterns can
help in identifying sound concepts.

We begin with a single pattern: “sound(s) of <Y>” where Y is any phrase, we allow Y
to be up to 4 words long. We then look for occurrences of this pattern in a large corpus. In
our experiments, we used the English part of ClueWeb092, which contains about 500 million
webpages. From this we obtain a large collection of phrases such as: “sound of honking cars”,
“sound of gunshots”.

However, this step produces a significant amount of noise. We, therefore, treat its output
as candidate sound concepts and introduce a method for removing spurious entries from this
collection. First, we generalize candidate concepts by replacing mentions with their part of

2http://lemurproject.org/clueweb09/

22

Figure 2.2: Unsupervised cataloging of sounds

speech tags, as follows:

sound of honking cars = sound of VBG NN

sound of gunshots = sound of NNS

where, the part of speech (POS) tag V BG denotes verbs in the gerund form, NN , and NNS
denote singular and plural nouns, respectively 3. The POS generalized concepts reduce the data
size to about only 20 unique patterns. Since the POS patterns are so few, we can use them to
filter out noisy concepts with little effort. The key to filtering is that not all POS patterns express
valid concepts. We can eliminate all but 6 of the POS patterns. For example, the pattern “sound
of JJ (adjective)” does not express sound concepts. All candidate concepts that match the 6 valid
POS patterns are retained, and the rest are discarded. The full list of valid POS patterns with
examples are shown in Table 2.1. The patterns in Table 2.1 produced a total of 116, 729 unique
sound concepts from the whole corpus. It should be noted that we have given a tiny amount of
supervision in the form of pattern definitions which are most likely to be a sound concept.

2.2.3 Analysis of Unsupervised Method

The 6 POS patterns produce a total of 116, 729 sound concepts from ClueWeb corpus. The
number of sound concepts for each pattern is shown in Figure 2.3. Since the list of sound concepts
discovered is large, we perform a limited evaluation of the preciseness of the method. For each
of the discovered sound concept phrases, we keep track of the frequency of their occurrences in
the corpus. We manually label the 100 most frequent phrases for each POS pattern. A phrase
is labeled positive if it is an actual sound concept or else it is labeled negative. It allows us to
compute the precision for frequent (top 100) phrases for each pattern. The precision for each
case is shown in Table 2.2.

3POS Abbreviations: https://www.ling.upenn.edu/ courses/Fall 2003/ling001/penn treebank pos.html

23

Pattern Example Concept

P1 <X> of (DT) VBG NN(S) honking cars, chirping birds
P2 <X> of VBG yelling, laughing
P3 <X> of (DT) NN(S) VBG dogs barking, glass breaking
P4 <X> of (DT) NN(S) gunshots, footsteps
P5 <X> of (DT) NN NN(S) church bells, train whistle
P6 <X> of (DT) JJ NN(S) classical music, heavy rain

Table 2.1: Patterns for discovering sound concepts in text. V BG is the part of speech tag for
verbs in the gerund form, NN for nouns, DT for determiners, and JJ for adjectives.

Pattern + in 100 Most Freq.

P1 <X> of (DT) VBG NN(S) 98

P2 <X> of VBG 71

P3 <X> of (DT) NN(S) VBG 91

P4 <X> of (DT) NN(S) 59

P5 <X> of (DT) NN NN(S) 93

P6 <X> of (DT) JJ NN(S) 49

Table 2.2: Precision for the 100 most frequent
phrases (for each POS pattern)

Figure 2.3: Number of sound concepts
for each pattern

We observe that 3 POS patterns have more than 90% precision. The lowest is for <JJ NN(S)
>at 49%. Note that, the frequency of occurrences of a discovered concept cannot be directly
related to it being truly a sound concept. Frequency is a characteristic of the text corpus used.
For example, sobbing voices, siren breaking, cheering crewmen are sound concepts but occur
very few times in the text corpus. However, a good performance on the frequent phrases is an
indication of an overall good performance.

POS patterns <VBG NN(S) >or <NN(S) VBG > contains a noun combined with a verb,
which implies a combination of an object and an action. This combination is crucial for sound
production, and often the main aspects of a sound one would expect to capture. However, based
on other patterns it is worth noticing that, sounds are expressed in fairly complex ways.

To further assess the quality of discovered concepts, we consider sound events listed in some
of the datasets. We considered ESC-50 [Piczak, 2015b], Urbansounds [Salamon et al., 2014],
DCASE [Mesaros et al., 2016], and Audioset, currently the largest ontology and sound event list.
Together all four datasets contain a list of 605 sounds (with some repetitions). A subjective look
at the list of sounds in these datasets reveals some points worth mentioning.

To begin with, we note that almost all of the sounds events from these datasets are part of our
discovered list. The sound classes in datasets are usually undertaken with the labeling process
in mind, that is often the convenience of labeling is taken into account. In several cases, they
tend to group different sounds into a single category. For example, the label object banging in
DCASE dataset leaves us wondering about the type of “object”; this is important as different
objects might produce different sounds. Consequently, the sound name object banging leaves us
wondering about the nature of “object” and also about the exact characteristics of the sound.
Our extensive list of sounds discovered show a wide range of potential objects, each of which will
produce potentially different sounds. To cite a few examples from the list, iron banging, glass

24

banging, gavel banging, hammers banging, pots banging etc. There are several such examples from
across different datasets. By applying even some basic techniques such as word matching, our
list can be used to get a better understanding of the sound class mentioned in the dataset.

Consider another example from the DCASE dataset, the Dishes sound class. This label is
very generic and refers to all types of sounds associated with “dishes”. Can we easily find sounds
which are related to this “Dishes” class? Besides containing the class dishes itself, our list consists
of concepts such as dishes breaking, dishes clinking, dishes rattling, dishes shattering etc. Clearly,
these additional sound concepts represent narrower and more distinct characteristics. Since they
can be easily associated with the Dishes class, they together give more insights into the Dishes
sound label. Hence, a broader understanding of sounds is possible through these discovered sound
concepts.

Audioset contains some sound labels which are extremely broad, for instance, “Outside urban
or manmade”, “Outside rural or natural”, “Inside public space” . It can be argued that these are
mostly representatives of different environments and in fact represent acoustic scenes. In these
cases again the list of sounds we mined can help us understand the constituent sounds of these
classes. We look into it later in this chapter.

2.2.4 Supervised Filtering

The unsupervised discovery of sound concepts in the previous section can still give spurious
items. A few examples of such phrases which are not sound concepts but do not get filtered out
by the two-step process in the previous section are someone being (NN VBG), price dropping
(NN VBG), gaining experience (VBG NN), happy hunters (JJ NNS). Hence, to improve upon
the unsupervised discovery of potential sound concepts, we describe a supervised method for
classifying a text phrase as an audible phrase (sound concept) or a nonaudible phrase (non-sound
concept). A trained classifier is also useful in classifying any given text phrase into sound and
non-sound phrase classes.

Since bigram phrases are the most dominant and expressive set of sound concepts discovered
by the unsupervised method, we focus specifically on bigram phrases. A set of labeled data is
required for supervised training of classifiers. To obtain a reliable set of labeled data, we manually
inspect a small subset of the sound concepts obtained in the previous section and mark if it is
actually a sound concept or not. Note that, in the unsupervised case only 6 POS patterns express
valid sound concepts. We also use other the POS patterns to create a list of non-sound concepts
as well. We manually inspect and label a small subset of this list as well. Finally, we end up with
a total of ∼ 6000 sound concept and non-sound concept phrases.

The text phrases need to be appropriately represented by feature vectors on which classifiers
can be trained. Word Embeddings have been found to be very effective in capturing syntactic and
semantic similarity between words [Hashimoto et al., 2015, Mikolov and Dean, 2013, Pennington
et al., 2014] and have shown remarkable success in a variety of semantic tasks [Baroni et al.,
2014].

In this work, we use Word2Vec to obtain vector representation for words in text phrases. We
use Google News pre-trained embeddings 4 to represent each word by 300 dimensional vectors.
We then use two methods for representing each bigram phrase. In the first case, we take the
average of the word2vec representation for each word to represent the whole phrase. We refer to
this representation as AWV. In the second case, we concatenate the vector representation (CWV)

4 https://code.google.com/archive/p/word2vec/

25

Table 2.3: Accuracy of Supervised Learning

AWV CWV

Fold 1 87.03 90.00

Fold 2 89.05 89.32

Fold 3 87.84 91.87

Fold 4 89.77 90.30

Avg 88.42 90.37

for each word to obtain a 600 dimensional vector for each phrase. These vectors are then used
for training a linear SVM classifier.

Analysis

We created a list of sound concepts (positive) and non-sound concepts (negative) bigram phrases.
The total number of positive examples is 3189, and the total number of negative examples is 2758.
We randomly divide this data into 4 folds. 3 folds are used for training, and then the trained
model is tested on left out fold. The experiment is done all 4 ways. Linear SVMs are trained
on both AWV features and CWV features. The accuracies for both feature representations are
shown in Table 2.3. Concatenated word2vec features give slightly better performance compared
to averaged word2vec features. The average accuracy of more than 90% is achieved which shows
that our supervised classifier is highly reliable in classifying a text phrase as sound or non-sound
phrase.

The supervised filtering we described here is just one way to illustrate another filtering process.
If supervision can be made available, then a variety of other classification algorithms can also be
developed. We leave them for future works and instead focus on the next part of NLU for sounds.

2.3 Learning Acoustic Scene-Concept Relations

In Figure 2.1, we argued that a major component of natural language understanding of sounds is
developing methods which can automatically mine commonsense knowledge and relations about
sounds. Developing a large vocabulary of sounds was the first step in this direction which we
solved in the previous sections.

In this section, we consider Acoustic Scene - Sound Event relations, where the goal is to
describe an acoustic scene or environment by the set of sounds which occur in that scene or the
environment. This is usually a common sense knowledge for us. For example, we know what type
sounds we can expect in Home or in a Market. Acoustic relations in these forms can be helpful
in audio-based context recognition. Moreover, these relations can also provide co-occurrence
information about sound concepts. For example, laughing and cheering often occur together in
several acoustic environment.

From the perspective of semantic analysis in texts, we cast this task as a relation classification
problem. First, we find all sentences in the ClueWeb corpus that mention at least one of the
116, 729 sound concepts discovered in Section 2.2.2, and at least one acoustic environment such
as “beach”, “park”, etc. We then apply a dependency parser5 to any sentence that mentions a
sound concept and an acoustic environment. This step produces dependencies that form a directed

5https://pypi.python.org/pypi/practnlptools/1.0

26

Table 2.4: Example Paths for Positive Training Data

prep along() prep of() sound nsubjpass() heard prep in()
prep of() nsubjpass() filled prep with() sound prep of()

prep of() sound prep on() conj and() sounds prep of()
prep with() sounds prep of() prep of() sound prep to()

nsubj() alive prep with() sound prep of() prep upon()
prep of() sounds prep from() prep of() sounds prep on()

prep of() sound nsubj() came prep from() prep of() sounds prep at()

graph, with words being nodes and dependencies being the edges. For example, the sentence:
“The park was filled with the sound of children playing” , yields the following dependencies:

det(park-2, The-1)
nsubjpass(filled-4, park-2)
auxpass(filled-4, was-3)
root(ROOT-0, filled-4)
det(sound-7, the-6)
nsubj(playing-10, sound-7)
prep of(sound-7, children-9)
prepc with(filled-4, sound-7)’

The details of the dependency relations can be found in [De Marneffe and Manning, 2008].
Next, we traverse the dependency graph in order to obtain the path between the mention of
a sound concept, in this case “children playing”, and the mention of the acoustic environment
“park”. Shortest paths between entities have been found to be a good indicator of relationships
between entities [Nakashole et al., 2013, Xu et al., 2015b]. We, therefore, extract the shortest path.
In our example, the shortest path labeled with edge and node names is as follows: “nsubjpass()
filled prepc with() sound prep of()”.

2.3.1 Training Data

Given the paths, we would like to classify scene-sound pairs into those that express the relationship
of interest (Sound-Found-In-Environment) and those that do not. Classifier training would require
labeled training data.

To obtain training data, we proceed as follows: We sort the paths by frequency, that is, how
often we have seen the path occur with different scene-sound pairs. Among the most frequent
paths, we label the paths yes or no, depending on whether they express the relationship of interest.
This gives us a way to generate positive and negative examples using the labeled paths.

Examples of paths that generate positive training data are shown in Table 2.4. Examples of
paths that generate negative training data are shown in Table 2.5.

2.3.2 Classification

We use an LSTM recurrent neural network to learn the scene-sound relationship. Each word
w is mapped to a d-dimensional vector vw ∈ Rd through an embedding matrix E ∈ R|V |×d,
where |V | is the vocabulary size, and each row corresponds to a vector of a word. We initialize
the word embeddings with the 300-dimensional Google News pre-trained embeddings4. For the

27

Table 2.5: Example Paths for Negative Training Data

conj and() amod()
poss() nn()

nn() sound prep of() prep through()
prep of() appos()

det() conj and() sound prep of()
prep to() prep of() sound nsubj() filled dobj()

dependency relations in the path, we randomly initialize their vector embeddings and learn them
during training.
Path Encoding. To encode the shortest path between a sound concept and an acoustic scene,
we use a LSTM recurrent neural networks (RNN) which is capable of learning long-range depen-
dencies. While regular RNNs can also learn long dependencies, they tend to be biased towards
recent inputs in the sequence. LSTMs tackle this limitation with a memory cell and an adaptive
gating mechanism that controls how much of the input to give to the memory cell, and the how
much of the previous state to forget [Hochreiter and Schmidhuber, 1997].

We have a path: p = p1, ...,pp ∈ Rd and an associated path matrix P ∈ Rp×d, where each
row corresponds to the embedding vector of the word in that position.
The LSTM encoder generates the path encoding, vp, as follows:

hi = LSTM(vpi ,hi−1, ci−1), i = 1, . . . , p (2.1)

vp = hi : i = p

The LSTM encodes the word at timestep i = t in the path using the word embedding vector
vpt , the previous output ht−1, and the previous state of the LSTM cell ct−1. The output ht is
computed using the four main elements in the LSTM cell: an input gate it, a forget gate ft,
an output gate ot, a memory cell ct with a self-recurrent connection. The cell takes as input a
d-dimensional input vector for mention word xt = pi, the previous hidden state ht−1, and the
memory cell ct−1. It calculates the new vectors using the following equations:

it = σ (Wxixt + Uhiht−1 + bi) , (2.2)

ft = σ (Wxfxt + Uhfht−1 + bf) ,

ot = σ (Wxoxt + Uhoht−1 + bo) ,

ut = tanh (Wxuxt + Uhuht−1 + bu) ,

ct = it�ut + ft�ct−1,
ht = ot� tanh(ct),

where σ is the sigmoid function, � is element-wise multiplication, the W and U parameters are
weight matrices, and the b parameters are bias vectors.
Prediction. From the path encoding vp, we compute the output of the neural network, a
distribution over the positive and negative labels. The output for each word is decoded by a
linear layer and a softmax layer into probabilities over the labels. Therefore, the prediction dr is
given by

dr = softmax(Wr · vp) (2.3)

where softmax(zi) = ezi/
∑

j e
zj .

28

Table 2.6: 36 Acoustic environments

Acoustic Environments

1 Office Farm House Bus
2 Parties Funeral Library Park
3 Street Parking Lot Church Train
4 Airplane Wedding Cafe Cities
5 Campus Ballgame Bathroom Classroom
6 Train Station School Parks Bar
7 Grocery Store Trucks Forest Restaurant
8 Subway Airport Arena Construction
9 Beach Garden Stadium Ranch

Table 2.7: Examples of Environment (Scene)-sounds relations discovered

Environment Sounds

Forest Birds Singing, Breaking Twigs, Cooing, Falling Water

Restaurant Jazz, Laughter, People Talking, Music Drifting

Airport Planes Flying, Plane Engines, Aircraft, Intercoms

Park Laughing, Police Siren, Birds Chirping, Footsteps

Ranch Horses, Gunfire, Tapping Water, Bulldozers

Church Children Laughing, Church Bells, Singing, Applause

Beach Waves Crashing, Waves Lapping, Surf Hitting

Construction Hammering, Jackhammers, Engines, Blasting

Street Sirens, Men Shouting, Honking Cars, Cheering

Bar Piano Playing, Laughter, Clinking Glasses, Cheering

Analysis

In our experiments, we worked with a total of 36 acoustic environments which we define in Table
2.6, but our method is generic and can work with any number of environments. Most of acoustic
scenes from DCASE 2016 scene dataset [Mesaros et al., 2016] are part of our setup as well.

Table 2.7 shows a few examples of scene-concept relations. The full list of related sound
concepts for each acoustic scene or environment are available on this webpage6. Table 2.7 shows
a few sounds for 10 acoustic environments. A subjective analysis of all discovered relations shows
that a large part of sounds discovered for a given scene are meaningful, in the sense that the
sound concept is actually found in that acoustic environment. Overall, the method shows that
it is possible to mine such acoustic relations from text by applying machine learning and natural
language processing techniques.

2.4 Summary and Conclusions

In this chapter, we introduced natural language understanding of sounds where we developed
methods for mining sound related knowledge from text. We set the goal of automatically creating
a large vocabulary of sounds and then using that to obtain other sound related knowledge. We

6http://www.cs.cmu.edu/%7Ealnu/SOExpt.htm Copy and Paste in browser if clicking does not work

29

argue that this is a critical component of building an acoustically intelligent machine.

The general approach taken for finding sounds from the text was to first find potential can-
didates based on simple pattern search and then filter as per requirement. The filtering process
can be unsupervised or supervised. We showed that our unsupervised filtering method is simple
and yet extremely effective in discovering sound concepts from a large text corpus. For the initial
candidate concept phrases we started with a template of “sound(s) of <X >”. One can poten-
tially use other templates as well, such as “listening to”. The filtering step can also be modified.
For the supervised filtering step, we can use features other than word embeddings.

Our list of over 100, 000 sounds does contain some spurious items, phrases which are not
sounds; however, even with these false entries removed, we will still have the most extensive list
of sounds. This vast catalog of sounds will be useful for the further advancement of acoustical
intelligence in machines in a variety of ways. It can be used for building ontologies, extracting
higher label semantic information, labeling and creating larger datasets, mining richer and higher
level semantic information about sounds.

We then moved to the other part of natural language understanding for sounds, which is about
extracting commonsense knowledge about sounds. The specific problem we worked on is to find
sounds which are expected to occur in a given acoustic scene or environment. We proposed a
method which treats this problem as a relation classification task. That is whether a sound is
related to the given environment or not. With very minimal supervision we trained a classifier
for this relation classification task. Using our method, we were able to find sounds occurring in
36 different scenes. This could be potentially extended to other scenes as well. Although not
undertaken in this work, these scenes - events pairs can be useful in acoustic scene classification
tasks.

Text based understanding of sounds is vital for the larger problem of automated understanding
of sounds by machines. This chapter is just the beginning of natural language understanding of
sounds. We expect that in future other works will explore several other problems in this domain.
One such problem can be the notion of audibility in longer phrases. For instance, “a cat runs
past a dog into a wall” has the constituent “cat runs into a wall”, which can be expected to
result in a mewling sound. “The car crashed into the tree” also evokes a perception of audibility.
Knowing the notion of audibility in longer sentences will lead to a better understanding of sounds
by machines. Moreover, it can also be useful for a knowledge base such as NELL, which aims to
mine all kind of commonsense knowledge through the web. This can add sound specific knowledge
to NELL.

On the relations front, methods for establishing other relations can be developed. Sound -
source relation is one such important relationship which can be helpful in machine perception of
sounds. Human beings in general always associate sounds with a source and knowing the source
of a sound is crucial for the meaningful interpretation of sounds by machines. For learning sound-
source relations templates of the form, GENERATES(SOUND,PHRASE) can be used. However,
we can try to directly learn sound - source relations for some of the discovered sound concepts as
well. Concepts such as car honking, glass breaking etc. clearly contain information related to the
sources, and this basic pattern can be used to associate sources with sounds in a large number of
cases.

Sound concepts also need to be appropriately organized and grouped. The same acoustic
phenomenon may be referred to by different names. Hence, we should develop methods by which
machines should know that these phrases describe the same sounds.

Furthermore, we can develop methods for the organization of sounds. For instance, all sounds

30

originating from the same source can be grouped together. In other case, sounds occurring in
an environment can be grouped together. Hierarchies can be built through these groupings. In
conclusion, we believe through our work on sounds and language, we have added an essential
component to acoustic intelligence in machines.

31

Chapter 3

Scaling Audio Event Detection

- The Promise of Weak Label Learning

Even the weak become strong when they are united.

- Friedrich Van Schiller

3.1 Introduction

Audio Event Detection (SED) or Sound Event Detection (SED) is the problem of developing
computational methods for detecting sound events in an audio or video recording. The detection
task, more specifically, refers to the task of temporal localization of an event in the recording,
whereas the recognition (or classification) task involves finding the presence of one or more event
in a given audio recording. Throughout this and further chapters we will be considering both
detection and classification of sound events in audio recordings. We will mostly use the term
audio event detection (AED or SED) in general discussion and specify the distinction between
detection and classification as needed, for instance, while presenting methods and results where
it needs to be clarified.

The field of audio event detection is relatively younger than other fields in the broad area
of audio processing, for example, automatic speech recognition. In the last few years, the field
has received considerable attention, and it is now growing at a good pace. The wide range of
applications of automated understanding of sounds into intelligent devices has been the primary
motivating factors. However, some of the early papers appeared around late 1990’s [Wold et al.,
1996] and several works also appeared in the early 2000’s; one can then argue that the field is at
least a few decades old.

Over the years, a variety of methods for audio event detection have been proposed, exploring
different machine learning and signal processing techniques. All of these works employ some
form of feature representation for the audio and then supervised learning methods to train event
detectors or classifiers. The generic steps for training audio event detectors are shown in Figure
3.1. The signal processing part in step four plays a vital role in developing features for audio
recordings. Similar to other fields such as automatic speech recognition or object recognition in

32

Figure 3.1: General Framework for Training Audio Event Detector

images, supervised learning has been in the driver’s seat as far as machine learning domains are
concerned. A wide range of supervised learning methods have been used, random forest, support
vector machines and neural networks, to name a few. In all cases, the detectors are trained from
examples of the sound to be detected. Therefore, one requires annotated data where the segments
of audio containing the desired event are clearly indicated (as well as data in which the events
are distinctly not present). We will refer to this type of labeling where time stamps marking the
beginnings and ends of the events in the recordings are given as strongly labeled data.

This is fundamentally limiting since such well-annotated data are generally scarce and creating
labeled data in those forms is very resource intensive. Since strongly labeled data are hard to
obtain, the amount of training and test data in most cases are very small as well. This raises
several issues concerning the learning process, especially that the generalization capabilities of the
trained models can suffer due to small training data. Moreover, it is also a massive hindrance in
scaling the AED to hundreds or potentially thousands of sound events; creating strongly labeled
data for such a large number of sounds is exceptionally hard. Overall, the scale and scope of
current works on AED have been limited by the lack of labeled data.

To address the challenges posed by the reliance on strongly labeled audio data, we propose
weakly supervised learning for audio event detection [Kumar and Raj, 2016a,b]. This is the first
work to propose weak label learning for sound events.

In weakly labeled data, the labels are available for the complete recordings. This implies
that only the presence or absence of an audio event in the recordings are known. Unarguably,
the annotation effort required to generate weak labels is much lesser compared to the strong
labels. Hence, creating larger datasets with a considerably larger amount of labeled (weakly)
audio data per event, and for a higher number of sound events is much easier in this case. The
intuition behind relying on weakly labeled audio data is that recordings that have been labeled as
containing the event will have regions which are consistent with one another because they contain
the event but will not be consistent with any region of the recordings that are not similarly labeled.
Hence, an appropriately designed machine learning and signal processing method should be able
to learn from such data.

Our central idea behind learning from weakly from weakly labeled data is that we can divide a
long audio recording into small segments (overlapping or not) and then devise algorithms around
these segments. The constraint is that labels are available for the collection of segments and not
the individual segments. We embody this principle into an algorithmic framework which falls
under the general rubric of Multiple Instance Learning. Multiple Instance Learning (MIL) is a
generalized form of supervised learning in which labels for individual instances are not known;
instead, labels are available for a collection of instances, or a “bag” as it is usually called. For
audio event detection using weakly labeled data, an audio recording can be considered as a bag
and the segments of the recording as instances within the bag.

Moreover, using MIL framework we can also assign temporal locations to the occurrences
of the events in a given audio recording. Hence, the framework can learn from training data
with no temporal information about any event, but the learned models can provide temporal

33

information about events in an audio recording. Before going into the details of the framework
and the methods, we present an overview of some literature on audio event detection.

3.2 Literature on Audio Event Detection

As mentioned earlier, plenty of works on audio event detection and audio content analysis exist.
One of the earliest work on content-based retrieval of audio is [Wold et al., 1996]. This system
named Muscle Fish worked on 15 sound classes including sound events such as laughter, bells,
telephone, percussion, etc. The audio recordings in this work were characterized by perceptual
features, e.g. loudness, pitch, harmonicity, bandwidth. Normalized Euclidean distance or Ma-
halanobis measure in the nearest neighbor setting is then used for classification. Another early
work [Feiten and Günzel, 1994] explored indexing of sound recordings in databases using neural
nets, although not necessarily focusing on content-based analysis. [Liu et al., 1997] developed the
idea of using audio information for scene classification in video recordings.

[Li, 2000] compliments the perceptual audio features in Muscle-Fish with mel cepstral co-
efficients (MFCCs) and uses nearest field line method [Li, 1998] for classification. They show
that their method can outperform Muscle Fish system. [Guo and Li, 2003, Lu et al., 2003] used
Support Vector Machines (SVMs) for classification and again combined cepstral coefficients with
other acoustic features such as zero crossing rate, pitch, etc. to represent audio recordings.

The above works looked at the problem from the perspective of content-based retrieval. [Xiong
et al., 2003a] can also be put in the same category, though the focus of this work is on sports
videos. A later work [Huang and Cox, 2010] also explored audio events in the sports domain. The
objective in these works was to detect events relevant to sports, for example, cheering, applause
and ball hits.

Surveillance is another area where audio event detection found early use. Automated surveil-
lance based on audio is advantageous as audio does not require “line of sight” and is relatively
cheaper to acquire and transmit. Events such as scream, gunshot, etc. are central to these surveil-
lance oriented works [Atrey et al., 2006, Clavel et al., 2005a, Pikrakis et al., 2008, Valenzise et al.,
2007]. In [Valenzise et al., 2007] two parallel GMM classifiers are used for discriminating gunshots
and screams from noise. The authors of [Pikrakis et al., 2008] use a Bayesian network for gun-
shot detection, treating it as a likelihood maximization process that is solved through dynamic
programming.

In a more generic setting, taking cues from speech recognition, GMM - HMM models similar to
speech recognition systems have been investigated [Mesaros et al., 2010, Zhuang et al., 2010]. Mel-
Frequency cepstral coefficients (MFCCs) are most frequently used for parameterizing audio events
although spectro-temporal features [Chu et al., 2009, Cotton and Ellis, 2011], Log-frequency
Cepstral Coefficients, Linear Predictive Cepstral Coefficient (LPCC) [Atrey et al., 2006] under
different learning frameworks have also been investigated.

Several supervised learning methods require fixed dimensional feature representation for an
audio recording. A simple yet effective approach to do this is through “bags of audio words”. It
is essentially a population-count histogram representation – by clustering feature vectors derived
from the signal to a known codebook. This approach too has been successfully applied to the
problems of detecting events in audio [Kumar et al., 2013b, Pancoast and Akbacak, 2012], as well
as for multimodal approaches to event detection [Ye et al., 2012] and [Wang et al., 2014b]. The
bag of audio words method can be applied to a variety of low-level audio features such as MFCCs
[Pancoast and Akbacak, 2012], autoencoder based features [Amid et al., 2014] and normalized

34

spectral features [Lu et al., 2014] to name a few.

On the audio representation front, there have been attempts to obtain unsupervised repre-
sentations of audio through sound units called Acoustic Unit Descriptor [Chaudhuri et al., 2011].
Once representations of audio recordings in terms of these acoustic unit descriptors are obtained,
event detection can be done in a variety of ways. A straightforward method is to once again
employ a bag of words representation and then use a classifier such as random forest [Kumar
et al., 2012].

[Phan et al., 2015b] presented a random forest regression-based approach for audio event
detection. The approach was also extended to early detection of audio events [Phan et al., 2015a].
Early detection of sound events is an interesting problem and can be useful in applications where
we might be interested in detecting the even as soon as possible, for example in monitoring
systems.

Non-negative matrix factorization (NMF) based methods have also been exhaustively explored
for AED [Cotton and Ellis, 2011, Dessein et al., 2013, Gemmeke et al., 2013, Komatsu et al., 2016].
Supervectors obtained from Gaussian Mixture Models (GMMs), often used for speaker recognition
and verification tasks [Bimbot and et al., 2004], have been shown to work well on the audio event
and scene classification tasks also [Jin et al., 2012, Kumar et al., 2013a, Zhuang et al., 2009]. Our
supervector based system was ranked among the top 7 systems in DCASE 2016 acoustic scene
classification task [Elizalde et al., 2016].

The problem of polyphonic sound event detection deals with detection of multiple sound events
happening simultaneously. Recent papers have attempted to address this problem through the
neural network based approaches Cakir et al. [2015], Hayashi et al. [2016].

Coming to more recent developments, the success of deep neural networks (DNNs) on different
tasks led to the investigation of DNNs based methods for audio event detection as well [Amid
et al., 2014, Ashraf et al., 2015a, Cakir et al., 2015, Gencoglu et al., 2014, Phan et al., 2016, Piczak,
2015a, Salamon and Bello, 2017]. However, in most of these DNN based works, the amount of
data used is small, and the effectiveness of deep learning methods over conventional learning
approaches is arguable. More recent methods which explore large-scale audio event detection, e.g
[Hershey et al., 2017], will be discussed later in this thesis.

The DCASE challenges, in 2013 [Stowell et al., 2015], 2016, 2017 and 2018 1 have further in-
creased the interest in the audio event and scene classification problems. A recent book [Virtanen
et al., 2018], on the challenges, methods, and applications of the field of sound event and scene
analysis is a good source of current literature on sound event detection. Readers can also refer
to some other application oriented works mentioned in the previous chapter for more references.

Recently, some exciting works at the intersection of vision and sounds have come out. [Aytar
et al., 2016] presented an approach for transferring knowledge from a network trained to recognize
images to learn features for audio recordings. [Aytar et al., 2017] extended it further by learning
deep features using three different modalities, image, audio, and text. Some other multimodal
works have investigated the problems of locating objects in images and videos that produce
sounds. In short, they try to learn correspondence between visual scenes and sounds Arandjelović
and Zisserman [2017], Senocak et al. [2018]. Although, these are not specifically on the problem
of sound event detection, the correspondence between vision and sound can play an important
role in developing acoustic intelligence in machines.

All of the above sound event detection methods rely on fully supervised learning and hence
on strongly labeled data. Each classifier/detector is trained using several clearly-demarcated

1http://dcase.community/

35

Figure 3.2: Weakly Labeled vs Strongly Labeled
Strongly labeled data contains time stamps of the occurrences of the events. Weakly labeled, on

the other hand, only requires one to mark whether the event is present or not.

instances of the type of sound event it must detect, in addition to several negative instances –
instances of audio segments that do not contain the event. This, as we stated before, is very
hard to scale. A way to address this problem is through weakly supervised learning. Weakly
supervised learning has been explored in the computer vision community to a significant extent
[Cinbis et al., 2017, Duan et al., 2012b, Wang et al., 2014a], their presence in audio related tasks
are more or less non-existent. A couple of prior audio-related works based around the idea of
coarse labeling appeared in the domain of music processing [Mandel and Ellis, 2008, Song and
Zhang, 2008]. Another audio related work exploring multi-instance multi-labeling problem is the
classification of bird species based on their sounds [Briggs et al., 2012].

3.3 Weakly Labeled Learning of Audio Events

Weakly supervised audio event detection relies on weakly labeled audio recordings for training
models. Weakly labeled data identifies only the presence or absence of an event in the recording;
their actual location within the recordings is not marked. Figure 3.2 illustrates strong vs. weak
labeling of events in audio recordings.

Strong labeling, where we need to mark temporal boundaries of the events is naturally a
difficult and resource intensive task to do; it is time-consuming as well as an expensive process.
Often, one must go back and forth several times in a recording to mark the beginnings and ends
of the audio events. Overlapping events and noise can make the task even harder.

Another issue with strong labeling is a subjective one; which is the different interpretation of

36

Figure 3.3: A Recording of Footsteps
Different annotators might mark different numbers of beginning and ends.

sounds by different annotators. Consider, for example, an audio recording of Footsteps sounds
shown in Figure 3.3. How many beginnings and ends should be marked for this recording: one,
two, four, or eight? Different annotators interpret the event differently and assign different
beginnings and ends to the footsteps sound. Besides making the annotation task harder, this also
creates unnecessary variability in the event exemplars, which is likely to confuse any algorithm
that attempts to learn the underlying structure and composition of the audio event.

Weak label learning addresses the issues with strongly labeled data. Since timestamps need
not be marked, weak labeling is relatively much easier to do and hence we can think about
scaling audio event detection. Moreover, the event when present in the recording is available to
the learner in its entire natural form, without any assumption or bias about the beginning and
ends which might get introduced by the annotator.

However, the most significant advantage of the weakly supervised learning is that it opens up
the possibility of exploiting the massive amount of audio (multimedia) data on the web. Most
of the audio data on the web have some associated metadata, from which recording level labels
or weak labels can be inferred. This can completely remove the manual annotation process and
can potentially scale audio event detection to hundreds or thousands of hours of weakly labeled
audio data. We next formulate the problem of audio event detection using weakly labeled data
and then present our framework for the same.

3.3.1 Problem Formulation

Before going further, we would like to define some nomenclature which will be used throughout
the thesis. By the term Recording, we will imply the full audio recording in its entirety, it can
be just a few seconds long, or it can be several minutes long. Segments refers to short duration
slices of the recordings, 1 to 1.5 seconds in most cases in this work.

Our objective is to train the detector models using weakly-labeled audio data which comprise of
recordings in which only the presence or absence of these events are identified, without indicating
the exact location of the event or even the number of times it has occurred. Let R = {Ri : i =
1 to NR} be the collection of audio recordings and E = {Ei : i = 1 to NE} be the set of events
for which detection models must be built using R.

For each Ri, a certain subset of events from E are known to be present (weak-labels). For
example, the information might say that Ri contains events E1, E3 and E6. It is also possible
that the subset of E present in Ri is empty, meaning that no event from E is present in Ri.

Clearly, to train a detector for an event Ei one cannot just use all recordings that are marked
as containing Ei, since a significant portion of the marked recordings might also contain other
events. Moreover, since the start and end times of the occurrences of event Ei in the recordings
are not known, it is impossible to extract out the specific segment of the audio that contains
the event for further use in supervised learning. Conventional supervised learning is thus not
possible.

37

To solve this problem, our main idea is that instead of looking at an audio recording in its
entirety, we should look at it at the segment level. Essentially, we divide the whole audio recording
into multiple segments and then work with these segments. So, a weakly labeled recording
gets transformed into a collection of audio segments, and the label for this collection of audio
segments with respect to an event is known. We argue that learning with this labeled collection of
audio segments can be formulated as Multiple Instance Learning. We present Multiple Instance
Learning next and then later formalize audio event detection using weakly labeled data through
multiple-instance learning.

3.4 Multiple Instance Learning

Multiple Instance Learning (MIL) is a weak form of supervised learning and was first developed
in the context of drug activity detection by [Dietterich et al., 1997]. Unlike fully supervised
learning which is defined in terms of instance-label pairs, MIL is described in terms of bags;
bags are simply a collection of data points or instances. Bags are the primary units in MIL and
labels are attached to the bags, rather than to the individual instances within them. A negative
labeled bag contains negative instances only. However, a positive bag is one which has at least
one positive instance (an instance from the target class to be classified). More informally, we can
say a negative bag is “pure” whereas a positive bag is “impure”. This generates an asymmetry
from learning perspective as all instances in negative bags can be uniquely assigned negative label
whereas for the positive bags the same does not apply; an instance in a positive bag may either be
positive or negative. Thus, it is the bag-label pairs, rather than instance-label pairs, which form
the training data from which a classification model must be learned.

We represent the bag-label pairs as (Bi, Yi). Here Bi is the ith bag and contains instances
xij where j = 1 to ni, and ni is the total number of instances in the bag, i.e. Bi = {xij : j =
1 · · · ni}. Yi ∈ {−1, 1} is the label for bag Bi. Yi = 1 implies a positive bag and Yi = −1 implies
a negative bag. Let the total number of bags be indicated by N . One can attempt to infer labels
of individual instances xij in the bag from the bag label. The label yij for instances in bag Bi
can be stated as:

Yi = −1⇒ yij = −1 ∀ xij ∈ Bi, (3.1)

Yi = 1⇒ yij = 1 for at least one xij ∈ Bi (3.2)

This relation between Yi and yij is simply

Yi = max
j
{yij}. (3.3)

The goal in MIL is to learn a decision or classification model given a set of bag-label pairs. Several
methods have been proposed to solve MIL problem Learning Axis-Parallel Concepts [Dietterich
et al., 1997], Diverse Density[Maron and Lozano-Pérez, 1998], Citation-KNN[Wang and Zucker,
2000], mi-SVM and MI-SVM [Andrews et al., 2002] miGraph[Zhou et al., 2009],MILES [Chen
et al., 2006]. Here, we discuss methods based on Support Vector Machine and Neural Networks
which we employ for audio event detection tasks.

3.4.1 MIL using Support Vector Machines

The MIL problem can be solved using Support Vector Machines (SVM) in two forms. The first
form called mi-SVM simply imposes at least one positive instance in a positive bag constraint

38

in the conventional SVM optimization problem. The second form, called MI-SVM, redefines the
margin formulation in SVM to account for the fact that “a positive bag contains at least one
positive”. In other words, it defines the margin for each bag through a single instance from the
bag, and then margin maximization is done with respect to that selected instance. We present
both methods here.

mi-SVM

To understand mi-SVM, let us first formalize the “at least one positive instance in a positive bag”
constraint in mathematical form. The bag label Yi and instance labels yij relations in Eq 3.1-3.2
can be represented in the form of linear constraints.

ni∑
j=1

yij + 1

2
≥ 1 ∀ i s.t Yi = 1, ; yij = −1 ∀ i s.t Yi = −1 (3.4)

Note that, the instance labels in the constraints defined above are unobserved hidden variables.
As in conventional training of SVMs, where we must estimate the parameters of a linear (or
kernelized) function such that the margin of training instances from the discriminant function
is maximized, here too we must maximize the margin. However, since the instance labels are
unknown, we modify the objective: the goal now is to maximize a soft margin over both the
decision function and the hidden integer variables, namely the unknown labels of instances. This
is done by including the constraints in Eq 3.4 in the optimization problem of SVM

min
yij ,w,b,ξ

1

2
||w||2 + C

∑
ij

ξij (3.5)

such that

∀i, j : yij(〈w,xij〉+ b) ≥ 1− ξij (3.6)

ξij ≥ 0 ; yij ∈ {−1, 1} ; yij = −1∀ i s.t Yi = −1 (3.7)
ni∑
j=1

yij + 1

2
≥ 1 ∀ i s.t Yi = 1 (3.8)

In equation 3.5, the labels yij of instances belonging to positive bags are unknown integer vari-
ables. As a result both, the optimal labeling of these instances as well as the optimal hyperplane
(w, b), must be computed. The separating hyperplane must be such that there is at least one
pattern from every positive bag in the positive half space and all patterns belonging to negative
bags are in the negative half space.

The above formulation is, however, a difficult mixed integer problem to solve. Hence, a simple
heuristic is used to solve the optimization problem. The main idea is that for given integer
variables , i.e. fixed labels, it can be solved exactly through the usual quadratic programming
as in conventional SVM. Once a solution is known it can be used to impute labels to instances
in positive bags to ensure that constraints are satisfied. The solution thus is a two-step iterative
process:

� Step 1: Given the integer variables (fixed labels) solve the standard SVM.

� Step 2: Given the SVM solution, impute the integer label variables for the positive bags.

39

Algorithm 1 mi-SVM Algorithm

1: procedure Learning SVM in MIL setting(Bi, Yi) // Input training bags and labels

//Initialization Step
2: yij = Yi for all j in Bag Bi
3: repeat
4: compute SVM solution w, b with imputed labels

5: for all bag Bi s.t Yi = 1 do
6: compute fij = (〈w,xij〉+ b) ∀ xij in Bi

7: yij = sgn(fij) ∀ j in bag Bi s.t Yi = 1

8: if (
ni∑
j=1

yij+1
2 == 0) then

9: compute j∗ = arg maxj(fij)
10: set yij∗=1
11: end if
12: end for
13: until imputed labels no longer change
14: end procedure

The labels of instances in the positive bags are all initialized as positive and are updated as
described above. The instances in negative bags are obviously labeled negative and remain so
through out the procedure. The two steps are iterated until no changes in labels occur. The
overall mi-SVM is shown in Algorithm 1. If it happens during an iteration that all instances in a
positive bag are labeled as negative, then the one with the maximum value for decision function is
assigned a positive label. This process is repeated until no change in imputed labels is observed.

MI-SVM

The second form of SVM for MIL, MI-SVM, takes a different view of the MIL problem. Here,
the margin is described directly in terms of bags. A bag is represented or “witnessed” by a single
instance for which maximal output is observed and margin is determined by this instance. Thus,
the optimization problem becomes

min
w,b,ξ

1

2
||w||2 + C

∑
i

ξij

s.t Yi(max
xij∈Bi

(〈w,xij〉+ b)) ≥ 1− ξi, ξi ≥ 0
(3.9)

Optimization heuristic similar to miSVM is used to solve the problem. The only difference is that
in this case a selector variable which determines which instance of a positive bag is “witness”
is updated in each iteration. The process is repeated until no change in “witness” instance is
observed for all bags.

3.4.2 MIL using Neural Networks (NN-MIL)

Neural networks can also be adapted for MIL domain [Zhou and Zhang, 2002]. In the conven-
tional training of neural networks, instance-specific labels for a collection of training instances are

40

available. Training is performed by updating network weights to minimize the average divergence
between the actual network output in response to these training instances and the desired output,
typically some representation of their assigned labels [Rumelhart et al., 1988][Werbos, 1982].

In the MIL setting, where only bag-level labels are provided for the training data, this proce-
dure must be appropriately modified. In order to do so, the divergence to be minimized must be
computed by utilizing only bag-level labels. Once again the idea of representing a bag through
instance with maximal output is exploited [Dooly et al., 2003]. For convenience in discussion let
us assume that bag labels in this case takes values 0 for the negative bags. Let oij represent the
output of the network in response to input xij , the jth instance in Bi, the ith bag of training
instances. We define the bag-level divergence for bag Bi as

Ei =
1

2

(
max

1≤j≤ni

(oij)− di
)2

(3.10)

where di, the desired output of the network in response to the set of instances from Bi, is simply
set to Yi, the label assigned to Bi. Thus for positive bags di = 1, whereas for negative bags di = 0.
The central idea behind the bag-level divergence of Equation 3.10 is to refer to any bag using the
instance which produces the maximal output. This was proposed by Dooly et al. in [Dooly et al.,
2003] where they showed that irrespective of the number of instances (positive or negative) in a
bag, the bag can be adequately described by the instance with the maximal output.

The bag-level divergence of Equation 3.10 may be understood by noting that the term
“maxj oij” in it effectively represents the bag-level output of the network, and that Equation
3.10 simply computes the divergence of the bag-level output with respect to the bag-level label
of Equation 3.3.

The ideal output of the network in response to any negative instance is 0, whereas for a
positive instance it is 1. For negative bags, Equation 3.10 characterizes the worst-case divergence
of all instances in the bag from this ideal output. Minimizing this effectively ensures that the
response of the network to all instances from the bag is forced towards 0. In the ideal case, the
system will output 0 in response to all inputs in the bag, and the divergence Ei will go to 0.

For positive bags, on the other hand, Equation 3.10 computes the best-case divergence of the
instances of the bag from the ideal output of 1. Minimizing this ensures that the response of the
network to at least one of the instances from the bag is forced towards 1. In the ideal case, one or
more of the inputs in the bag will produce an output of 1 and the divergence Ei will go to zero.

The overall divergence on the training set is obtained by summing the divergences of all the
bags in the set:

E =

N∑
i=1

Ei =

N∑
i=1

1

2

(
max

1≤j≤ni

oij − di
)2

(3.11)

The parameters of the network are trained using conventional backpropagation, with the differ-
ence that we now compute gradients of the divergence given in Equation 3.11, and that entire
bags of data must be processed prior to updating the network parameters. During training once
all instances in a bag have been fed forward through the network, the weight update for the bag
is done with respect to the instance in the bag for which the output was maximum. The process
is continued until the overall divergence falls below a desired tolerance.

Prediction using a trained network can now be done instance-wise as is done in standard feed-
forward neural networks. Bag labels, if required, can be predicted based on the label obtained
for the maximal-scoring instance in the bag.

41

3.5 MIL for Weakly Labeled AED

The recording level labels can be easily converted into bag-label pairs for multiple instance learn-
ing. To convert recording Ri to a bag, it is segmented into many short audio segments. Adjacent
segments may overlap by design. Let the segments derived from Ri be [IR1

i
, IR2

i
, ... , IRK

i
]. Each

of these smaller segments is now treated as an individual instance within the bag Ri. Formally, a
bag Ri is thus Ri = {IR1

i
, IR2

i
,, IRK

i
}, where K depends upon the duration of recording Ri, the

length of the individual segments, and the overlap between adjacent segments. If the weak label
states that E is present in a recording Ri then Ri is a positive bag; otherwise, it is a negative
bag. We are making an assumption that if the event Ei is present in Ri then, at least one of
the segments contains the event and is a good representation of it. Hence, Ri will be a positive
bag for the event. On the other hand, if an event is marked as not being present in a recording,
then clearly none of the segments (instances) of the recording will be positive for that event, and
hence overall that recording is a negative bag for the event. Hence, the weak labels for all the
recordings can directly provide bag-label representations needed in MIL. Once bag-level pairs are
created we can use any MIL method.

3.5.1 Temporal Localization of Events

Often, it is important to localize an event within the recording instead of just predicting whether
the event is present in the recording or not. The MIL methods we discussed learn from bag-level
labels; but once learning is complete, they can classify individual instances. Therefore, not only
can we detect the presence of an event in a test recording (bag) but also in individual segments
of the test recording.

Formally, if Rx is a test recording, which we may more explicitly represent as Rx(t), where “t”
indexes time. The individual segments in the recording as we described before are IR1

x
, IR2

x
,, IRK

x
.

The segment IRk
x

is the portion of Rx given by IRk
x

= Rx(t), (k− 1)l
′ ≤ t < (k− 1)l

′
+ l. Here, l

is the length of the segment in seconds and l
′

denotes the amount by which the segment window
is shifted with respect to the previous segment. In the special case of non-overlapping segments,
l
′

= l. If an event Ei is detected in segment IRxk it means this event can be localized to the time

segment
(

(k − 1)l
′
, (k − 1) ∗ l′ + l

)
in the recording Rx. The framework can thus generate in-

formation about the temporal location of events, and thus, we can obtain a complete description
of the recording in terms of audio events. This is significant since the descriptive form of labeling
was never present in the training data in the first place.

3.6 Experiments and Results

3.6.1 Features for Audio Segments

Before moving on to the evaluation of weakly supervised learning for AED, we describe the fea-
ture representation used for characterizing each audio segments. We use Mel-frequency cepstral
coefficients (MFCCs) vectors to obtain low-level feature representations for audio segments. How-
ever, direct characterization of audio as sequences of MFCC vectors tends to be ineffective for
the purposes of audio classification [Zhuang et al., 2010]; other secondary representations derived
from these are required. One simple and yet very successful approach is the Bag of Audio Words
feature representation, which quantizes the individual MFCC vectors into a set of codewords, and
represents segments of audio as histograms over these codewords. For short audio segments, a

42

more effective representation is obtained by using Gaussian Mixture Models (GMMs) to represent
audio words and derive features based on it [Kumar et al., 2013b]. A robust feature represen-
tation is obtained by combining two features derived from GMM audio words. The first, which
we represent as ~F , is similar to bag-of-words characterizations such as [Van Gemert et al., 2010],
and the second, which we represent as ~M is a characterization of the modes of the distribution
of vectors in the segment.

As a first step to obtaining the ~F and ~M feature vectors for the audio segments, we train
a universal Gaussian mixture model (GMM) on MFCC vectors from training audio data. This
background GMM is used to extract the ~F and ~M features. Let us represent this universal GMM
as G = {wk, N(x;λk)}, where wk is the a priori probability or mixture weight of the kth Gaussian
in the mixture, N(.) represents a Gaussian, and λk collectively represents the set of mean and
covariance parameters of the kth Gaussian.

~F Features

For each audio segment we have a sequence of D-dimensional MFCCs vectors denoted by ~xt where
t = 1 to T . T is the total number of MFCC vectors for the given segment. For each component
k of the background GMM we compute

Pr(k|~xt) =
wkN(~xt;λk)
G∑
j=1

wjN(~xt;λj)

, (3.12)

F (k) =
1

T

T∑
i=1

Pr(k|~xt) (3.13)

The ~F feature vectors are ~F = [F (1), F (2), · · · , F (G)]>. Thus, ~F is G-dimensional vector rep-
resenting a normalized soft-count histogram of the MFCC vectors in the recording. It captures
how the MFCC vectors are distributed across components of G. It is a variant of bag of audio
word features where soft assignment is used in place of hard quantization.

~M Features

A more detailed characterization can be obtained by actually representing the distribution of the
feature vectors in the segment. To do so, we train a separate GMM for each audio segment by
adapting the universal GMM G to the collection of MFCC vectors in the segment. The means of
the universal GMM are adapted to each training segment using the maximum a posteriori (MAP)
criterion as described in [Bimbot and et al., 2004]. This is done as follows for kth component of
the mixture

nk =

T∑
t=1

Pr(k|~xt), (3.14)

Ek(~x) =
1

nk

T∑
t=1

Pr(k|~xt)~xt (3.15)

Finally, the updated means are computed as

~̂µk =
nk

nk + r
Ek(~x) +

r

nk + r
~µk (3.16)

43

Table 3.1: Number of Positive Bags for each event

Event Number of Bags Event Number of Bags

Cheering 171 Engine Noise 80

Children’s Voices 33 Hammering 17

Clanking 13 Laughing 116

Clapping 102 Marching Band 24

Drums 25 Scraping 30

where ~µk is the mean vector of kth Gaussian and r is a relevance factor. The value of r controls
the contribution of the original mean (~µk) to the adapted mean. The means of all components
are then appended to form the G×D vector ~M as ~M = [~̂µ>1 , ~̂µ

>
2 , · · · ~̂µ>G]>.

The above two features are unsupervised methods of characterizing the statistically charac-
terizing audio segments. ~F is a softer version of the bag of words features and are often used as
standalone features. ~M is more detailed, though it is also more easily affected by inter-instance
variability. Together, they give us a robust representation of both the coarse and fine structure
of the signals in short audio segments. In our experiments, we have used ~F both in combination
with ~M and as a standalone feature.

Once we have a robust set of features for representing events in short audio segments we can
extract features for each audio segment (instances) of a recording (bag). Thus, a recording (bag)
Ri = {IRi1, IRi2,IRiK} in feature space becomes Ri = {~xRi1; ~xRi2;~xRiK} where ~xRij are

either the ~F features alone or the concatenated ~F and ~M vectors. The bags are then fed into the
MIL algorithms.

3.6.2 Experimental Setup

We evaluated the proposed MIL framework on a portion of the TRECVID-MED 2011 database
[32]. A subset of the MED dataset is annotated with ten audio events (Table 3.1). To be able
to compare performance with the fully supervised case and to compute performance measures
for temporal localization of events, our annotations include actual locations and duration of
occurrences of these events. However, only the information regarding the presence or absence of
these sounds is used in our MIL based framework. A total of 457 recordings (bags) are used in
the experiments. This is over 22 hours of audio data. We henceforth refer to this set of recordings
as the “dataset”. The length of each recording in the dataset varies from a few seconds to several
minutes with an average length of about 2.9 minutes. This implies that the number of instances
in each bag also has a wide range.

Ideally, the length of each segment should be properly set keeping in mind the expected
duration of the event of interest. However, we observed that segment length decided by heuristics
work well. We report results using a segment length fixed to 1 second. The segments overlap
by 50%. This results in well over 150,000 total instances. The names of the ten events and the
total number of positive bags for each event are given in Table 3.1. Some of the recordings in the
dataset do not contain any of the ten events; also a recording might be a positive bag for more
than one event. Hence, the sum total of numbers in Table 3.1 is different from the total number
of recordings in the dataset. For each event recordings where it is not present are used as the
negative bags. The dataset is partitioned into four sets. Three of the sets were used to train the
models, which were then tested on the fourth set. This is done in all four ways meaning each set

44

Table 3.2: AUC comparison with supervised SVM

Events AUC (miSVM) AUC (supSVM)

Cheering 0.632 0.682

Children’s Voices 0.678 0.668

Clanking 0.714 0.727

Clapping 0.646 0.697

Drums 0.60 0.640

Engine Noise 0.623 0.671

Hammering 0.557 0.568

Laughing 0.527 0.741

Marching Band 0.551 0.558

Scraping 0.723 0.850

Mean 0.625 0.680

becomes a test set. This gives us results on the whole dataset. Hence, all results reported here
are on the entire dataset.

All recordings were parameterized into sequences of 21-dimensional Mel Frequency Cepstrum
Coefficient (MFCC) vectors. MFCC vectors were computed over analysis frames of 20ms, with
an overlap of 50%(10ms) between adjacent frames. The ~F and ~M features were derived from
these sequences of MFCC vectors. We trained two background GMMs with 64 and 128 Gaussian
components respectively. The number of Gaussian component in the features is represented as
the subscript in the feature such as ~F64, ~M64.

ROC curves are used to analyze the performance. AUC of ROC curves are used to compare
results in different cases. Higher AUC values indicate better detection performance. We first
show results for recognition of events at recording (bag) level using miSVM and NN-MIL. The
instance level results or detection results measuring temporal localization of events are provided
in Section 3.6.4.

3.6.3 Results

miSVM Results

For the miSVM framework linear SVMs are used in all experiments. LIBLINEAR [Fan et al.,
2008] is used in the implementation of the miSVM framework. The slack parameter C in the
SVM formulation is tuned by cross validation over the training set. The mean AUC (MAUC)
over all events is shown in the last row of each table.

Comparison with supervised SVM

We start by showing the comparison of our proposed framework with fully supervised AED where
the strong labels are available. For supervised learning, the timestamps in the annotations are
used to obtain pure examples of each event, following which an SVM is trained using feature
representations of these examples. Table 3.2 shows this comparison. The comparison is shown
for ~F64 features. In Table 3.2 “supSVM ” refers to supervised SVM. As is expected, supervised
SVMs perform better than miSVM. However, there are several events for which the performance
obtained with weak labels is comparable to that obtained with the strong labels. Although
supervised SVM outperforms miSVM, miSVM can be easily scaled to a larger dataset which will

45

Table 3.3: AUC for different number of components in GMM (miSVM)

Events AUC (~F64) AUC (~F128)

Cheering 0.632 0.638

Children’s Voices 0.678 0.633

Clanking 0.714 0.744

Clapping 0.646 0.667

Drums 0.60 0.636

Engine Noise 0.623 0.642

Hammering 0.557 0.587

Laughing 0.527 0.540

Marching Band 0.551 0.554

Scraping 0.723 0.735

Mean 0.625 0.637

Table 3.4: Effect of ~M features addition (miSVM)

Events AUC (~F64) AUC ([~F64, ~M64])

Cheering 0.632 0.668

Children’s Voices 0.678 0.723

Clanking 0.714 0.859

Clapping 0.646 0.680

Drums 0.60 0.639

Engine Noise 0.623 0.575

Hammering 0.557 0.660

Laughing 0.527 0.641

Marching Band 0.551 0.745

Scraping 0.723 0.744

Mean 0.625 0.693

improve performance and model generalization. However, the same cannot be easily done for
supervised SVMs as obtaining strongly labeled data is extremely difficult.

Number of Gaussian Components

Table 3.3 shows AUC results for ~F64 and ~F128 features, obtained by training a 64 and 128 Gaussian
GMM G, respectively. It can be noted that there are several events for which increasing the
number of Gaussians leads to about 2 − 4% (up to 5.5% relative) absolute improvement in
AUC values. At the same time, there are events such as Cheering and Marching Band where
this improvement is not observed, or the performance goes down as in Children’s Voices. A
performance drop of about 4% is observed in this case. The optimal cluster size is known to be
event specific [Kumar et al., 2013a], and this holds for MIL-based audio event detection as well.

46

Events AUC

Cheering 0.668

Children’s Voices 0.730

Clanking 0.859

Clapping 0.680

Drums 0.639

Engine Noise 0.642

Hammering 0.660

Laughing 0.685

Marching Band 0.745

Scraping 0.744

Mean 0.704

Table 3.5: Overall Results (miSVM)

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

0

0.2

0.4

0.6

0.8

1

Cheering
Children Voices
Clanking
Clapping
Drums

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

0

0.2

0.4

0.6

0.8

1

Engine Noise
Hammering
Laughing
Marching Band
Scraping

Figure 3.4: ROC Curves for using miSVM framework

Adding ~M Features

We now observe the effect of adding the ~M features to the system, along with ~F . Table 3.4 shows
a comparison of AUC values when only ~F is used and when it is combined with ~M features.
The results shown are obtained with 64 Gaussian components in the GMM. It can be observed
that adding ~M features obtained by maximum a posteriori adaptation leads to a considerable
improvement of results for almost all events. Events for which ~F features alone results in poor
performance such as Hammering, Laughing and Marching Band benefit significantly from the ~M
features. Absolute improvements of 10.3%, 11.4% and 19.4% respectively are observed for these
three events. This amount to around 18.5%, 21.6% and 35.2% relative improvements. For other
events too absolute improvements in the range of 2.1%−14.5% can be noted. The only exception
is Engine Noise for which the soft-count ~F seems to be better. It is likely that although we
observe improvements in miSVM, the actual improvements may be classifier dependent.

mi-SVM Recording Level Results

The overall bag-level recognition results using miSVM are shown in Table 3.5. This is the best
result across different feature representations for audio segments. The corresponding ROC curves
are in Figure 3.4. Events such as Clanking, Children’s Voices, Scraping and Marching Band are
easier to detect compared to other events such as Drums. The mean AUC over all events is 0.704
which validates the success of our proposed framework. A mean AUC of around 0.7 shows that
audio event detects can indeed be trained using just weakly labeled data. Better results can be
obtained by using a larger amount of training data which is much easier to obtain in the weakly
labeled scenario.

NN-MIL Results

For the NN-MIL method, the number of hidden layers, the number of nodes in each hidden layer
(nno) needs to be set. We used a network with one hidden layer in all experiments. The network
is trained for a total of 60 epochs. The learning rate is either fixed at 0.1 throughout training
or 0.1 for the first 30 epochs and then reduced in each epoch until it reaches 0.01. Larger values
of nno are used for higher dimensional of input features. For ~F64 and ~F128 features 3 different

47

Events AUC

Cheering 0.759

Children’s Voices 0.767

Clanking 0.764

Clapping 0.781

Drums 0.601

Engine Noise 0.698

Hammering 0.603

Laughing 0.632

Marching Band 0.618

Scraping 0.785

Mean 0.701

Table 3.6: Overall Results (NN-MIL)

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

0

0.2

0.4

0.6

0.8

1

Cheering
Children Voices
Clanking
Clapping
Drums

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

0

0.2

0.4

0.6

0.8

1

Engine Noise

Hammering

Laughing

Marching Band

Scraping

Figure 3.5: ROC Curves for using NN-MIL framework

values of nno are used. These are 16, 50 and 100 for ~F64 and 50, 100 and 150 for ~F128. When both
~F and ~M are used, the values of nno used in the experiments are 256 and 512. Training neural
networks, in general, requires exhaustive tuning of parameters to get good results. Although
results presented here show reasonable performance for the NN-MIL framework, we believe that
better results can be obtained by more aggressive parameter tuning. In fact, parameter tuning
may give better insight into the NN-MIL framework.

We present only the best results across the different settings. Table 3.6 shows overall results for
NN-MIL framework. The corresponding ROC curves are shown in Figure 3.5. If we compare these
results with the miSVM approach, we can observe that events such as Scraping, Clanking and
Children’s Voices are easier to detect in this case as well. Events such as Drums and Hammering
are harder to detect using NN-MIL as well. The mean AUC remains almost same as miSVM;
however, one can note a significant difference with respect to miSVM for several events. For
Cheering, Children’s Voices, Clapping, Engine Noise, NN-MIl is better than mi-SVM whereas for
the rest miSVM is better. An analysis on a larger vocabulary of events might help differentiate
the two approaches more clearly.

3.6.4 Temporal Localization of Events

To evaluate the performance on temporal localization task, we need the ground truth labels of all
instances in all bags. The instances in the bags have been obtained through uniform segmentation
in this work. Each instance is a one-second window segment of the recording which is moved
in an overlapping manner to segment the recording. However, the annotations providing time
stamps of events in the recording does not adhere to this uniform segmentation. Thus an event
might start and end within a segment, and it can also start or end at any point in the segment.
Hence, assigning ground truth labels of instances for a valid analysis is not straightforward. We
use a simple heuristic to obtain ground truth labels. As described in Section 3.5.1 each segment
represents a specific time duration of the recording. Looking into the actual annotations available,
if an event can be marked to be present in at least 50% of the total length of the segment we call
the ground truth label of that segment as positive; otherwise, it is negative.

Once the ground truth labels with respect to an event have been obtained for all instances
for all bags, we can analyze the performance in the usual fashion. We again present ROC

48

Table 3.7: AUC for temporal localization of events

Events AUC (miSVM) AUC (NN-MIL)

Cheering 0.588 0.669

Children’s Voices 0.665 0.705

Clanking 0.925 0.645

Clapping 0.585 0.626

Drums 0.680 0.628

Engine Noise 0.603 0.652

Hammering 0.542 0.572

Laughing 0.548 0.581

Marching Band 0.758 0.701

Scraping 0.684 0.724

Mean 0.658 0.650

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

0

0.2

0.4

0.6

0.8

1

Cheering
Children Voices
Clanking
Clapping
Drums

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

0

0.2

0.4

0.6

0.8

1

Engine Noise

Hammering

Laughing

Marching Band

Scraping

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

0

0.2

0.4

0.6

0.8

1

Cheering
Children Voices
Clanking
Clapping
Drums

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

0

0.2

0.4

0.6

0.8

1

Engine Noise
Hammering
Laughing
Marching Band
Scraping

Figure 3.6: ROC Curves for Temporal Localization (First Two-miSVM, Last Two - NN-MIL)

curves and use AUC as the metric characterizing these curves. The best AUC values across all
experiments for temporal localization using both miSVM and NN-MIL are shown in Table 3.7.
The corresponding ROC curves are shown in Figure 3.6. The figures in the upper row are for
miSVM, and the figures in the bottom row are for NN-MIL. Compared to bag-level results, about
5% drop in mean AUC is observed for both cases. For some events such as Hammering and
Laughing, the performance is poor for both frameworks. For others, reasonable performance is
obtained. Although these numbers are not exceptionally high, they are still significant since no
temporal information was used during the training stage. Overall, AUC results validate that our
proposed framework can work for temporal localization as well.

3.7 Scalable MIL Methods

In the previous sections, we presented MIL based methods for audio event detection using weakly
labeled data. Other MIL algorithms can also be used. However, MIL algorithms have been known
to suffer from scalability issues [Wu et al., 2017]. For example, the SVM based MIL methods are
iterative methods and a quadratic program is solved in each iteration. Scalability is an important
factor especially when we are trying to work on problems such as AED where the total number
of instances will become very large even for a few hours of audio data. The primary reason MIL
algorithms are time-consuming and do not scale to large data is that they try to learn in the bag

49

domain, where the hypothesis space can be larger and more complex.

One idea to develop scalable MIL methods is that instead of trying to learn complex hypothesis
for bag representation, we can map each bag into a single vector representation, usually in some
higher dimensional space. This vector representation for each bag should try to encode as much
non-redundant information as possible for the bag. Also, it should be computationally efficient
for large-scale learning. Once this mapping can be done efficiently, the MIL problem effectively
moves to the supervised learning paradigm because each bag is represented by a single vector and
has a corresponding label. The scalability issue can be further addressed by using any scalable
supervised learning algorithm. For example, linear SVMs are known to be computationally cheap
and performs quite well in high dimensional space. Based on this idea a method called miFV was
proposed in [Wei et al., 2014]. On the same idea, we proposed miSUP and miSUP MN as two
other scalable MIL methods [Kumar and Raj, 2016a].

3.7.1 miFV

miFV uses Fisher Vectors (FV) for encoding bags into the vector representations. FV originates
from Fisher Kernels and is a state of art method for image retrieval and classification [Sánchez
et al., 2013]. We show an outline of obtaining Fisher Vectors for each bag.

A Gaussian Mixture Model (GMM) is first trained using the instances of all bags. This GMM
is learned over the instance space using all instances in the training bags. Let this K component
GMM be represented as M = {wk, N(µµµk,Σk) k = 1 to K} where wk is the mixture weight, µµµk
is mean vector and Σk is the covariance matrix of kth Gaussian. The Gaussians are assumed to
have diagonal covariance with diagonal variance vector represented as σσσ2k. Then for given a bag
Bi with ni instances we compute the following for each component of GMM

γj(k) =
wkN(xij ;µµµk,Σk)
K∑
j=1

wjN(xij ;µµµk,Σk)

(3.17)

αBi
wk

=
1

ni
√
wk

ni∑
j=1

(γj(k)− wk) (3.18)

αBi
µµµk

=
1

ni
√
wk

ni∑
j=1

γj(k)

(
xij −µµµk
σσσk

)
(3.19)

αBi
σσσk

=
1

ni
√

2wk

ni∑
j=1

γj(k)

(
(xij −µµµk)2

σσσ2k
− 1

)
(3.20)

Finally, the Fisher Vector is concatenation of αXi
wk

, αXi
µµµk

, αXi
σσσk

for all K Gaussians. γj(k) is simply

the posterior probability of xij belongingness to kth GMM component. This results in a (2D+1)K
dimensional representation where D is the dimension of instance space. An improved fisher vector
(IFV) obtained by sign - square rooting and L2 normalization of the original Fisher vector can
also be used. Once fisher vector has been used one can potentially use any supervised learning
method to train audio event detectors. In particular, Fisher vectors work remarkably well with
linear SVMs. Its clear from Equations 3.20, 3.19 and 3.18 that once the GMM M has been
obtained, the computation of Fisher vector is cheap and can be done efficiently. Combined with
linear SVMs, the overall method is very efficient and scalable.

50

3.7.2 miSUP

Based on the same central idea of mapping bags to single vector representation, we propose
an alternative scalable MIL method by describing a different method to encode bags. Similar
to miFV we start with the same GMM M trained on the instances of bags. The single vector
representation for a bag is then obtained by maximum a posteriori (MAP) adaptation of instances
in the bag to the GMM M. This essentially implies that the parameters of M are updated to
effectively represent the instances in the bag. The encoding of a bag Xi is done by following
steps.

For each component of the GMM we compute the posterior probabilities γj(k) as in Eq 3.17.
Then, the mean and variance updates are computed as

βBi
µµµk

=

∑mi
j=1 γj(k) xij + rµµµk∑mi

j=1 γj(k) + r
(3.21)

βBi
σσσk

=

∑mi
j=1 γj(k) x2

ij + r(µµµ2k + σσσ2k)∑mi
j=1 γj(k) + r

− (βXi
µµµk

)2 (3.22)

These updates can be derived using the general MAP estimation equations [Bimbot and et al.,
2004][Gauvain and Lee, 1994] . The factor r controls the amount by which the parameters (µµµk ,
σσσk) from M affect the new estimates βXi

µµµk
and βXi

σσσk
. Although there is a known update form for

mixture weights, it does not directly come from MAP estimation and we do not employ mixture
weight updates in our work. In fact weight terms are in general not used in practive for Fisher
Vectors as well [Vedaldi and Fulkerson, 2008]. The Fisher Vectors are thus 2KD dimensional.
We concatenate βXi

µµµk
and βXi

σσσk
for all GMM components to obtain the 2KD dimensional extended

vector representation for the bag Bi. These features are sometimes referred to as Supervectors
and hence the name miSUP.

We show empirically later that the concatenation of only means updates (Eq 3.21) are sufficient
to obtain reasonably good and comparable results. This is an important aspect of miSUP because
the dimensionality of the bag representation will be now only KD instead of 2KD in miFV. This
reduction by half can be significant, if KD is large, and can speed up the learning process in the
next stage where the classifiers are trained. It can also save a significant amount of storage space
if we go into large-scale audio (multimedia) content analysis problems where feature vectors of
possibly millions or billions of recordings (bags) are to be stored. We will refer to the mean only
Supervector based miSUP method as miSUP MN.

3.7.3 Experiments and Results

We consider a set of 8 events, namely Cheering, Children Voices, Clapping, Crowd, Drums, Engine
Noise, Laughing, Scraping from the same dataset as before. Rest of the experimental setting
remains same as in previous section. In this case, we use only ~F64 and ~F128 features. For non-
scalable methods we use the two forms of SVM methods, miSVM and MISVM. Linear Kernels
are used in all cases. For miFV, miSUP and miSUP MN, the GMM component size is varied as
4, 8, 16, 32, 64, 128. Recording level recognition results are presented.

Average Precision (AP) for each event is used as the performance metric. The Mean Average
Precision over all events is also shown for each case. Table 3.8 shows the AP numbers for all
events and methods. Best results across different K is presented. The first noticeable aspect in
Table 3.8 is that miFV and miSUP are superior compared to miSVM and MISVM. There is an

51

Events miSVM MISVM miFV miSUP miSUP MN

Cheering 0.482 0.500 0.629 0.605 0.59

Children Voices 0.130 0.142 0.264 0.193 0.193

Clapping 0.383 0.395 0.492 0.494 0.477

Crowd 0.470 0.583 0.685 0.670 0.663

Drums 0.078 0.112 0.233 0.263 0.242

Engine Noise 0.330 0.389 0.608 0.583 0.540

Laughing 0.288 0.300 0.506 0.431 0.425

Scraping 0.449 0.305 0.562 0.539 0.511

MAP 0.328 0.339 0.497 0.472 0.455

Table 3.8: Average Precision for Each Event Figure 3.7: Mean Training Times (Log(sec))

K −→ 4 8 16 32 64 128

Events ↓ miFV miSUP miFV miSUP miFV miSUP miFV miSUP miFV miSUP miFV miSUP

Cheering 0.629 0.566 0.629 0.579 0.603 0.605 0.61 0.58 0.598 0.582 0.624 0.574

Children Voices 0.227 0.182 0.199 0.158 0.174 0.193 0.176 0.185 0.152 0.142 0.172 0.125

Clapping 0.472 0.471 0.457 0.474 0.461 0.494 0.441 0.449 0.435 0.483 0.45 0.445

Crowd 0.664 0.644 0.685 0.646 0.676 0.67 0.674 0.599 0.647 0.601 0.643 0.613

Drums 0.207 0.205 0.233 0.144 0.152 0.181 0.217 0.126 0.197 0.19 0.204 0.106

Engine Noise 0.608 0.535 0.55 0.502 0.572 0.537 0.579 0.53 0.592 0.513 0.577 0.486

Laughing 0.465 0.403 0.506 0.41 0.479 0.406 0.487 0.431 0.471 0.413 0.468 0.416

Scraping 0.547 0.356 0.562 0.532 0.546 0.498 0.458 0.284 0.537 0.539 0.546 0.444

MAP 0.477 0.420 0.478 0.430 0.457 0.448 0.455 0.398 0.454 0.433 0.461 0.401

Table 3.9: AP Values For different K in GMM M

absolute improvement of about 16−17% (around 50% in relative terms) in MAP value using these
methods. For several events, miFV and miSUP improve AP by more than 75% over miSVM and
MISVM. MISVM seems to be marginally better than miSVM. Also, miFV performs better than
miSUP. We make a note of the fact that we used improved Fisher Vectors (IFV) [Sánchez et al.,
2013] in miFV approach. It is possible that some normalization techniques for miSUP might lead
to better results. The miSUP MN method with only half the dimension of miFV and miSUP
is competitive with both methods and gives comparable performance. Results for different K is
shown in Table 3.9.

Analysis of Algorithms: We try to compare the average training times across all events for
each MIL algorithm. For a given MIL algorithm the average training times for each event is noted
and then a mean training time is obtained by averaging over all events. This comparison is shown
in Figure 3.7. The y-axis shows the log of the mean training times in seconds. Clearly, miSUP
and miFV are much faster (about 20 to 100 times) compared to miSVM and MISVM. The order
of difference in time is actually higher for several individual events. This demonstrates the higher
scalability of miFV and miSUP compared to miSVM and MISVM. Fisher Vectors were imple-
mented using [Vedaldi and Fulkerson, 2008] which is possibly a very optimized implementation.
With optimized implementation, miSUP should be closely comparable to miFV. For linear SVM
classifiers, lower dimensional MISUP MN representation does not lead to a substantial reduction
in classifier training time and is similar to MISUP MN. However, it is important to note that for
other classifiers this gain can be significant.

52

3.8 Discussions and Conclusions

We introduced the idea of weak label learning for sound events. We showed that audio event
detection using weakly labeled data can be formulated as a multiple instance learning problem
and the recognition and detection performance numbers show that weakly supervised learning
for sound events is a promising avenue. Weak label learning opens up several new frontiers for
investigation but most importantly it offers us a way to scale audio event detection.

Finding correct event boundaries in audio recordings is an important task and we saw that
the MIL based method is capable of doing that. However, in the current setup with a fixed win-
dow size, the detection boundaries are only a rough estimate. In our experiments, we observed
that performance for temporal localization of events is lower than the recording level recogni-
tion of events. The window size itself is a hyper-parameter and may need to be adjusted for
different events. Shorter segment size might be more desirable for short duration events such
as Hammering, whereas longer segment sizes might be more suited for events with long-term
characteristics.

We saw that MIL algorithms can be computationally expensive and may not be suited for
large datasets. This forces us to think about the scalability of the MIL algorithms as scaling audio
event detection is our primary goal. To address this, we proposed some scalable MIL algorithms.
The scalable MIL methods encode all instances of the bag into a single vector representation.
The scalable methods turned out to be not only computationally less expensive compared to
non-scalable ones, but also lead to better recognition results. One concern, however, regarding
these scalable methods is the temporal localization of events. The encoding method is not suited
for encoding just a single instance, and hence temporal localization of events is an issue in this
case. One possible solution is to train a separate event detector model using the high confidence
segments (from the positive bags) obtained from the initial model trained on the weakly labeled
data. The process can be iterated several times for improvement. The problem is similar to
image object localization using weakly labeled data [Cinbis et al., 2017], and we can try to adopt
methods from these computer vision works.

A large number of other works have followed up on our idea of weakly labeled audio event
detection. Some of the works have investigated more into the multiple instance learning framework
itself, [Tseng et al., 2017, Wang et al., 2018]. Others, [Su et al., 2017, Xu et al., 2017], have
proposed deep neural network based approaches, which under certain assumptions again fall under
the general rubric of multiple instance learning. Audio event detection using weakly labeled data
has also been introduced in the annual IEEE AASP challenge on detection and classification
of sound events (DCASE) 2. A large-scale audio event dataset has been developed by Google
[Gemmeke et al., 2017] to further accelerate research in this direction.

The significance of weakly supervised learning of audio event primarily lies in the fact that
weakly labeled data can be obtained automatically from the web without any manual annotation
effort. One obvious choice for obtaining audio data from the web is YouTube or any other video
sharing websites. One can potentially use the top k retrieved results corresponding to a text query
(related to the sound) as weakly labeled data. YouTube topic API can also be used for obtaining
weakly labels. In other cases, it might have to be inferred from the metadata associated with the
videos. In these cases, our sound related knowledge mined from the web in the previous chapter
can play a crucial role. They can be used for filtering the noisy weak labels directly obtained from
YouTube as well. Nevertheless, creating weak labels for a given audio recording obtained from

2http://dcase.community/

53

the web is a challenge in itself. Even more important is the fact that unless manually inspected
weak labels obtained from any source or method will always contain some label noise. This poses
serious learning issues and needs to properly addressed. We will look into some of these problems
in subsequent chapters.

Once we register that weakly labeled audio event detection is the way to scale audio event
detection, it is easy to note the importance of weakly supervised deep learning methods for audio
event detection. Deep learning methods have been found to be an effective way to learn from
a large amount of data. In this chapter, we presented shallow methods for AED using weakly
labeled data. In the next chapter, we present deep learning methods for AED using weakly labeled
data. We will present convolutional neural networks based approaches which achieve state of the
art performances on large scale audio event detection with weakly labeled data. We will also see
how multimedia data from the web can be directly used without manual annotation efforts.

54

Chapter 4

Deep Learning for Weakly Labeled
Audio Event Detection

We must form our minds by reading deep rather than wide.

- Quintilian

Deep learning methods have led to remarkable improvement in performances of systems on
machine learning problems. Perhaps an overused statement but an apt one given its widescale
adoption in a variety of tasks in the last few years. Deep learning methods rely on large datasets,
and the availability of large-scale labeled datasets have been crucial to their success. However,
as pointed out earlier, lack of large-scale datasets have been a major constraint for sound event
detection. The weakly labeled learning showed us a promising way to scale audio event detection
by easing the labeling process. In this chapter, we will describe some deep learning methods for
audio event detection using weakly labeled audio data.

4.1 Introduction

The remarkable improvement in speech recognition and computer vision tasks around the year
2012 [Hinton et al., 2012, Krizhevsky et al., 2012] using deep learning led to investigations of
neural network methods for audio event detection as well [Espi et al., 2012]. In [Espi et al., 2012],
a tandem connectionist approach [Hermansky et al., 2000] along the lines of speech recognition
was used for AED. Multilayer perceptron (MLP) is used to generate the posterior features which
are then fed to a GMM - HMM system. Other works explored different feature representations
for audio and a deep neural network (DNN) as classifier [Ashraf et al., 2015b, McLoughlin et al.,
2015].

However, the bulk of the works have been on using Deep Convolutional Neural Networks
(CNNs) for audio event detection [Espi et al., 2015, Lidy and Schindler, 2016, Phan et al., 2016,
Piczak, 2015a, Salamon and Bello, 2017, Takahashi et al., 2016, Zhang et al., 2015]. Audio signals
for the purposes of classification and recognition are often characterized by some form of time-
frequency representations such as spectrograms, logmel spectrograms, modulation spectrograms,
constant-Q transforms (CQT), etc. CNNs allows classification systems to be built directly over
these representations, instead of extracting some higher level vector representations using them.

55

The idea is that deep networks with successive non-linear mappings can automatically learn
representations which will be suitable for recognition purposes.

[Zhang et al., 2015] extracted a fixed size (2 dimensional) features from spectrograms to use
with CNNs. The CNNs themselves are fairly straightforward, some convolutional layers followed
by some fully connected layers. [Espi et al., 2015] used CNN to extract features from spectrogram
patches. [Piczak, 2015a] presented CNN architectures for classifying sounds using logmel spec-
trograms. Logmel features have been perhaps the most popular input features for CNN based
audio event classification systems. [Lidy and Schindler, 2016] on the other hand used Constant-Q
transforms with convolutional neural networks and showed that it could perform better than log-
mel spectrograms. [Salamon and Bello, 2017] investigated different data augmentation methods
such as time stretching, pitch shifting, background noise addition, to improve the performance of
a CNN based system.

All of the above works rely on strongly labeled audio data and can be argued to be on a
small scale, considering the size and vocabulary of datasets used. Since the introduction of weak
label learning [Kumar and Raj, 2016b], and release of a large scale audio event dataset [Gemmeke
et al., 2017], deep learning methods for weakly labeled data have also been proposed. In this
chapter, we will describe our methods for large-scale weakly labeled audio event detection. Our
methods are primarily based on convolutional neural networks; however, the broad framework
we propose can be applied in a variety of ways. We propose different variations of our general
framework and achieve state of the art performance on weakly labeled datasets. We show that
our methods can perform well on manually created weakly labeled dataset as well as on datasets
obtained directly from the web, where no manual labeling was done. Later in this chapter, we
investigate factors which play important roles in weak label setting. Label density is one such
factor and is an inherent characteristic of weakly labeled data. We show how these factors can
affect performance in the weakly supervised training of neural networks.

4.2 Weakly Supervised Deep Networks

Most of the discussion in this chapter will revolve around convolutional neural networks, and we
will assume audio recordings are characterized by some matrix representations. These represen-
tations can be some time-frequency representations such as spectrograms or logmel spectrograms
or some vector embeddings which have been obtained for every small segment of the recording.
In either case, audio recordings are represented by a m× n dimensional matrix.

[Hershey et al., 2017] performed large-scale audio event detection using the web data. They
used a massive amount of audio recordings from YouTube to train well known CNN architectures
such as AlexNet [Krizhevsky et al., 2012], VGG [Simonyan and Zisserman, 2014] and ResNet [He
et al., 2016] for sound event detection. The labeling of the recordings was done automatically
using the knowledge graph and did not involve manual annotators. Moreover, the sound classes
are unfiltered and had several categories which do not represent sounds, for example, Web page.
However, it presents a simple method for learning from weakly labeled data and shows the limit of
training from weakly labeled web data using a simple approach. We first describe this approach,
referred to as Strong Label Assumption Training in this work. This approach despite being
reasonably simplistic can give good performance in several cases.

Let us assume that we have a dataset of N weakly labeled recordings and a total of C sound
events in the vocabulary. Throughout this chapter, unless otherwise specified, we will assume a
multi-label setting. This implies more than one sound event can be present in any given audio

56

Figure 4.1: Schema of Strong Label Assumption Training

recording. Let the ith recording and its label be represented by (Ri, Yi). The label vector, Yi, is
a C dimensional vector. It is 1 at index j, if Cthj sound event is present, otherwise 0.

Training any network requires loss computation and then computing gradients with respect to
the loss and then back-propagating it to update the network parameters. Since the timestamps
for events are not known, we cannot extract out the event specific portion from R to train the
network in a supervised fashion. A straightforward way to handle this problem is through strong
label assumption training which is presented next.

4.2.1 Strong Label Assumption Training

The main idea behind strong label assumption training (SLAT) [Hershey et al., 2017] is that
we ignore the fact that the recordings are weakly labeled, and instead, assume that the event
marked to be present in the recording runs throughout the whole duration recording. Hence, the
assumption is that the labels are in fact strong and train the network accordingly.

Let SRi
k , k = 1 to K be small segments (say 1 second) obtained by chunking Ri into small

pieces. The segments may or may not overlap, though most of the analysis done in this work
employs overlapping segments. f represents the network function such that f(X) represents the
output of the network (Nslat) for an input X and L is the loss function employed to compute
the divergence between the network output and the desired output. Let us assume that we have
designed a network, which takes as input fixed duration segments SRi

k , and produces output for
each segment.

Under the strong label assumption, the desired output for any segment SRi
k is Yi. Then, the

loss for the whole recording Ri is computed as the total loss over all segments of Ri. Eq 4.1
shows the total loss for Ri.

Loss(Ri) =
K∑
i=1

L(f(SRi
k), Yi) (4.1)

Often, the duration of the recordings can vary. However, this is not a concern here as the
segments are of fixed size and the network Nslat, can be any convolutional neural network archi-
tecture. [Hershey et al., 2017] used well established CNN architectures as AlexNet [Krizhevsky
et al., 2012], VGG [Simonyan and Zisserman, 2014] and ResNet [He et al., 2016]; these network

57

architectures have been shown to perform well on computer vision tasks. Hence, the overall pro-
cess is fairly simple, Nslat takes in fixed sized segments as inputs, and then the loss function is
computed using the network output and the label Yi of the recording. Figure 4.1 shows the gen-
eral schema of the strong label assumption training. The network consists of some convolutional
layers followed by some fully connected layers, the last layer FC3 being the output layer.

Strong label assumption training offers a simple way to train audio event detection models
using weakly labeled data. It is also flexible in terms of network architecture choice, Nslat can be
any CNN architecture.

Strong label assumption training despite being simple is not an efficient approach for weak
label learning and can result in a significant amount of label noise while training. An audio event,
say door bell ringing, may be present for only a few seconds in a recording which may be several
minutes long, a fact that is ignored in assuming that the label is strong. Moreover, segment-
wise training of CNN is cumbersome and computationally inefficient. Segmenting recordings is
a preprocessing step in itself, and often one must experiment with different segment sizes, which
would require repeated preprocessing of the data. Also, a significant portion of computational
operations done by the network is common over different segments, and in segment-wise training
these operations are repeated. We propose CNN based approaches which can address these issues
[Kumar and Raj, 2017b, 2018b, Kumar et al., 2018].

4.2.2 Weakly Labeled Training

The SLAT method is based on looking at the recordings at the segment level, similar to multiple
instance learning. Here also, the main idea was to look at the recordings at the segment level
and then design the framework around that. This approach can be argued to be the general idea
behind any weakly supervised method. Each input is considered as a collection of data points
rather than a single data point and the collection as a whole has a label using which the algorithm
is expected to learn. For example, we saw that MISVM does this by redefining the margin with
respect to the instance which gives the maximal output. Our weakly supervised training is also
a bottom to top approach where the network is designed to compute loss at recording level using
segment level prediction.

Similar to the previous case, let us assume that f(SRi
k), k = 1, 2, ...K be the network outputs

for segments of the recordings. f(SRi
k) is a C dimensional vector. The main idea behind the weak

label training is to map these segment level outputs to the recording level, that is one vector which
represents the class wise output for the whole recording. Once we have the recording level outputs
for all classes, we can compute the loss function with the recording label Yi. This is formulated
in Eq 4.2.

Loss(Ri) = L(g(f(SRi
1), f(SRi

2),, f(SRi
K))), Yi) (4.2)

In Eq 4.2, the function g(), maps the segment level predictions (f(SRi)) to the recording
level prediction. The loss is then computed using this recording level prediction with respect to
the recording level label, Yi. The mapping function g() can in principle be any function which
looks at predictions on segments and then uses that knowledge to produce output for the whole
recording. This formulation is essentially capturing the simple intuition that weak labels, that is
the labels for the full recordings, essentially comes from presence or absence of events at lower
levels, in this case at the segment level. The role of the mapping function is to look at these
segment level outputs and obtain the recording level output using them. The general schema for

58

Figure 4.2: Schema of Weak Label Training

Weakly LAbeled Training (WLAT, read as “dub-lat”) is shown in Figure 4.2.

Note that in Figure 4.2, the whole audio recording is input to the network and we obtain
segment level output in one forward pass. We will discuss this characteristic of the network
architecture later on. For now, let us assume that the network automatically produces segment
level outputs which are then mapped by the function g() to obtain recording level predictions.
K denotes the number of segments obtained for a given input.

The function g() can be any function which produces a C dimensional output vector using
the outputs from the previous layer. The function g() can be very complex or something simple.
Here, we lay down some simple forms g() can take.

Linear Functions: In this case the mapping function g() is a linear function, g(~wj , ~fj) = ~wTj
~fj .

Note, that we overloading the representation and the vector ~fj represents the segment level
outputs for the jth class. ~wj is the weight parameter for the jth class and is a K dimensional
vector. We discuss four different forms for the parameter w.

� Sparse ~wj : In this case, ~wj is a sparse and in fact a one hot vector. This one hot vector
represent the segment which gives the maximal output for the class Cj . Hence, ~wj is given
by

~wkj =

{
1, if k = argmaxl=1 toK

~f lj
0, otherwise

(4.3)

The mapping function g, here, in simple terms considers the maximal output across all
segments as the recording level output for each class. It is inspired from the multiple
instance learning neural network we presented in the previous chapter.

� Dense Fixed ~wj : The one hot weighing vector above is an extreme case where only one
segment for each class contributes to the final output. This might not be the most efficient
thing to do as most of the segments essentially do not contribute to the loss function and
update computations. Hence, we suggest a dense weighing vector where all segments play a
role in the recording level output. One simple form g() can take is the averaging function.
The weights ~wj for each class is then given by

59

~wkj =
1

K
for k = 1 to K (4.4)

The mapping function in this case is essentially taking the average of segment level pre-
dictions for all classes. Clearly, the weights here are fixed parameters which can change
depending on size of input (that is K) at any given step. However, these are not learned
parameters.

g() as Attention Functions: Taking an average or ‘max’ across all segments are ad hoc ways
of setting the parameter ~w of the mapping function g. Though these methods are well motivated,
and empirically works well, the parameter ~wj ’s can, in fact, be learned during network training.
Making the weights ~w learnable forces them to pay attention to the appropriate segments. The
approach is similar to attention like methods which have been very useful in other deep learning
works [Cho et al., 2014, Xu et al., 2015a]. We propose two simple ways to bring attention into
the WLAT framework through the mapping functions g().

� Single Learnable ~w: In this case, we consider a single weight vector to weigh segments
across all classes. Hence, ~wj = ~w for all j. ~w is a learnable parameter which is updated at
each backpropagation step during network training. The parameter ~w, in this case, is not
used to directly weigh the segments (the number of which can vary across different input
recordings) but is used to compute another weight vector ~ws, which is used for actually
computing the weighted recording level outputs.

Let F be the matrix representing segment level outputs for all classes. F is a K × C
dimensional matrix, where each column of F is fj , that is the segment level outputs from
the network for the input recording. Eq 4.5 shows the steps for computing recording level
predictions in this case.

~ws = σ(F ~w) (4.5)

oj = fTj ~w
s

σ(~x) is the softmax function given by σ(~x)i = exi∑K
i=1 e

xi
for i = 1, ...,K. Thus the mapping

function g first computes an overall weight of each segment. Then the segments for each
class are weighed by this weight ~ws, to obtain the recording level prediction. The trainable
parameter ~w of the function g is updated in each backpropagation step. It is expected it
will allow the overall network to focus on segments which might be more important than
the others.

� Class Dependent ~w’s: This is an extension to the previous one, we now aim to compute
different ~ws for different classes. The argument is that the segments which should be
attended to for different classes is expected to be different and hence the function g should
maintain C such parameter vectors, one for each class. The computation (in Eq. 4.6)
remains same as before except that the process is done for each class.

~wsj = σ(F ~wj) (4.6)

oj = fTj ~w
s
j

60

Hence, the parameter of the function g is C×C dimensional matrix, W . The computations
can then be rewritten as

W s = σ̃(FW) (4.7)

O = W s � F

oj =
K∑
k=1

Okj

In Eq 4.7, σ̃() applies softmax on each class, that is normalizing in the segment dimension
for each class. The matrix W s represents the importance of each segment for each class.
Hence, each column of the product FW is separately recognized. � is element wise product
operation. The final recording level prediction for each output is obtained by the weighted
sum of segment level outputs, where the weights are given by the matrix W s. The learnable
parameter W of g() is updated along with other network parameters.

Note that, during actual training adding a regularization term for W might help avoid over-
fitting and improve performance. Overall this method of learning weights can be compared
to attention like frameworks which have been developed in several tasks.

Sequential Mapping: The previous mapping functions do not consider the segment level out-
puts as a sequential or ordered structure, they treat it as a simple collection of outputs. Given
that some sounds can have long-term characteristics, a sequential mapping might be useful. To
treat the segment level output as a sequential structure, we can use a recurrent neural network
(RNN) as the mapping function g(). The RNN takes in the sequence of segment level outputs
and then outputs the recording level predictions.

4.2.3 Characteristics of WLAT

In this section, we discuss some characteristics of the WLAT method. For a better understanding,
we will take a concrete network architecture to discuss WLAT. Note that, the network architec-
tures in the later sections will be different from this one and this is just for the purposes of
discussion here. Figure 4.3, shows an example architecture for the proposed method.

The layer blocks, C1 to C5 consist of convolutional layers followed by a max pooling layer.
The convolutional layers consist of filters of size 3 × 3, operated with a stride of 1. The inputs
at all layers are padded, with padding size set to 1. The number of channels used in each layer
is: {B1: 32, B2: 64, B3: 128, B4: 256, B5:256}. The max pooling is done over a window of size
2× 2 moving with a stride of 2.

Layers F1, F2, and F3 are also convolutional layers with 512, 512 and C numbers of channels
respectively. F1 has convolutional filters of size 4× 4; F2 and F3 has filters of size 1× 1. A stride
of 1 is used without any padding on the inputs of these layers. ReLU activation is used in all
convolutional layers except for F3. F3 is the segment level output layer with sigmoidal activation
output. The segment level output layer is followed by the mapping function g. For the purposes
of discussion here we will assume that sparse ~w’s which is same as considering the max across all
segments for each as recording level output.

We will assume here that the recordings are represented by their logmel spectrograms, and
these are the inputs to the network. So a recording R is represented by, R ∈ RN×128, where N
is the number of logmel frames.

61

Figure 4.3: An example CNN architecture for weak label training.

The first point to note about is that WLAT does not make strong level assumptions by design.
It aims to obtain a recording level prediction through the segment level outputs and then uses
that to compute the loss for the input. The second point worth noting is that the network is fully
convolutional and can thus handle recordings of variable lengths. This ensures that the training
data consisting of audio recordings of different durations is not a concern. The network produces
outputs for all segments in one forward pass for any given input.

The third characteristic to be noted is that the network design controls the segment size, hop
size and thus the number of segments produced for any input. Consider, an input recording with
1024 logmel frames, that is R ∈ RN×128. Given the network design in Figure 4.3, one can easily
compute the output size after each layer. The output size at F3, which feeds into the mapping
function is C × 29× 1, that is the number of segments is 29. The network is designed to produce
outputs at every 128 frames segment moving by 32 frames. The convolutional layers in C1 - C5
gives the same size output as their input, except for the channel dimension. Hence 1×1024×128
input at C1 will produce output of size 32 × 1024 × 128. The hop size of 32 frames is obtained
by the max-pooling layers in C1 - C5, they reduce the dimension by a factor of 2. Finally, the
convolutional layer F1, with filter size 4×4 also plays a role in deciding the segment and hop size.
The segment size in terms of actual time duration can be computed using the sampling frequency
of the audio recording and the STFT window and overlap sizes used in logmel computations. In
the current example, assuming 44100 Hz sampling frequency and 1024 (23 ms) point FFT window
moving by 512 (11.5 ms) points, the segment size of 128 frames comes out to be approximately
1.5 seconds. The segment hop size is approximately 0.375 seconds.

Finally, the network can do temporal localization of the events as well. The segment level
predictions can be used to locate the event in the input as well. The segments, as we saw above,
corresponds to specific frames of the input and hence we can project back the predictions for a
segment to the input frames. These give us the probability of classes in those frames. We will
show examples of such localizations in results sections.

4.2.4 Loss Function

Often several audio events are simultaneously present in an audio recording. Hence, most of our
experiments will consider a multi-label task, that is more than one sound labels are possible for
each recording. The sigmoid outputs of the network can be considered as class specific posteriors
for any given input. Binary cross entropy function as shown in Eq 4.8 is then used to compute

62

loss with respect to each class.

l(yc, pc) = −yc ∗ log(pc)− (1− yc) ∗ log(1− pc) (4.8)

In Eq 4.8 yc and pc = N (X) are the target and the network output for cth class respectively. The
overall loss function is the mean of losses over all classes, Eq 4.9

L(X , y) =
1

C

C∑
c=1

l(yc, pc) (4.9)

4.3 Experiments and Results: Weakly Labeled Learning

4.3.1 Datasets

We consider two different web data sources in our experiments.
Urbansounds (US): Urbansounds [Salamon et al., 2014] dataset gives us human annotated
weakly labeled data. The source of audio recordings in this dataset is Freesound website [fre].
10 events, namely Air Conditioner, Car Horn, Children Playing, Dog Barking, Drilling, Engine
Idling, Gunshot, Jackhammer, Siren and Street Music were manually marked in the recordings.
Partial time stamps information for each recording is available in the dataset. We do not use that
information, and all experiments rely only on weak labels. A total of 1302 recordings, amounting
to about 27 hours is present in the dataset, with recording length varying from a few seconds to
upto 10 minutes. The dataset comes pre-divided into 10 folds. We use the first 4 for training
(533 recordings), next 2 (262 recordings) for validation and last 4 (502 recordings) as the testing
set.

YouTube Training Set: The importance of weakly labeled learning lies in being able to
obtain labeled data directly from the web without any human labeling effort and be able to train
robust AED models from these data. To show this, we collect training data for the 10 sound
events directly from Youtube.

Collecting videos from YouTube and automatically getting their weak labels is a challenging
task in itself. We propose a simple yet effective strategy to collect weakly labeled data from
YouTube. The intuition is based on observations from chapter 2, where we looked into the
problem of mining sound concepts from the text. We found that the keyword “sound” is often
associated with audio events when people describe it. Hence, we form the text query for searching
on YouTube by adding the keyword “sound” to the event name, e.g. children playing sound. This
leads to a considerable improvement in the retrieved queries for any given sound event. We then
select the top 125 videos under 10 minutes duration retrieved by YouTube and mark them to
contain that event. The duration of the recordings varies from 0.6 seconds to 10 minutes, with
an average duration of 2.1 minutes. The total audio data collected is around 48 hours. Clearly,
this data contains label noise, both false positives, and false negatives. We will refer to this data
as webly labeled, as the data has not been manually labeled. The weak labels are automatically
labeled.

Audioset Test Set: US dataset is a relatively clean dataset. Often it is required to recognize
events in low-quality consumer generated data, which are more like the noisy web data we use
for training here. To test our approach on data of such form and nature, we used the “Eval” set
from Audioset dataset [Gemmeke et al., 2017]. The source of Audioset is also YouTube. 9 events
out of the 10 events are present in the Audioset (except street music), and we will present results
only for 9 events. A total of 761 test recordings exist with durations of 10 seconds for most cases.

63

Figure 4.4: Top:SLAT and Bottom:WLAT Architectures used in Experiments (4.3)

4.3.2 Multi-Scale Acoustic Features

We employ logmel spectra as acoustic features for training the network. We extract logmel
features at multiple scales for training the network. The different scales, here, refer to different
FFT windows sizes. Different FFT sizes lead to features at different frequency resolution. The
sampling rate for all recordings is 44100 Hz. FFT window sizes used are 23ms (1024), 46ms
(2048), and 92ms (4096). The hop size is fixed to 11.5ms (512) for all four window sizes, and 128
mel-bands are used to extract mel spectra.

During training, the network is simply trained on all feature variants. Essentially, the multi-
scale feature training serves as a data augmentation method. It exposes the network to different
frequency representations which lead to better learning. During test stage, the logmel spectra for
the test recordings at each FFT scale are forwarded through the network, and then the average of
output scores across all FFT sizes is considered as the final output. Note that, due to mel-spectra
feature extraction at three different FFT scales, the total experimental data is 3 times in all cases,
that is up to 144 hours of training data in case of the YouTube training set.

4.3.3 Network Architectures

WLAT: The weak label training architecture used in experiments is shown in the bottom panel
of Figure 4.4. The layer blocks, B1 to B4 consist of two convolutional layers followed by a max
pooling layer. The convolutional layers consist of filters of size 3× 3, and convolution operations
are done with a stride of 1. The padding size is set to 1 for inputs at all layers. The number
of channels used in each layer within each block is as follows: {B1: 32, B2: 64, B3: 128, B4:
256}. Note, both layers in each block have these many channels. The max pooling is done over
a window of size 2× 2 moving with a stride of 2.

The B5 block is again a convolutional block except that it contains only one convolutional
layer, with 256 channel outputs, which is again followed by the max pooling layer. Layers F1,
F2, and F3 are also convolutional layers with 512, 512 and C numbers of channels respectively.

64

FFT scales used MAP MAUC
in training Nslat NW Nslat NW

1024 0.641 0.715 0.899 0.930

1024, 2048 0.662 0.734 0.905 0.927

1024, 2048, 4096 0.697 0.750 0.905 0.935

Table 4.1: Performance of NW and Nslat and effect of multi-scale training

F1 has convolutional filters of size 4× 4; F2 and F3 has filters of size 1× 1. A stride of 1 is used
without any padding on the inputs of these layers. ReLU activation is used in all convolutional
layers except for F3. F3 is the segment level output layer with sigmoidal activation output. The
segment level output layer is followed by the mapping function g.

We use linear mapping functions in experiments here, (a) Sparse ~wj ’s and (b) Dense Fixed
~wj ’s. The first one essentially takes maximum across all segments for each class whereas the
second takes an average of all segments for each class. In the architecture here, these can be
implemented through pooling layers (max or mean), where the pooling operator pools over the
segments. That is the C × K × 1 output after F3 is pooled to produce C × 1 output which is
then used to compute the loss. This network will be referred to as NW .

SLAT: We compare WLAT with SLAT [Hershey et al., 2017]. Nslat is trained on recording
segments where each segment is assigned the recording level label. The fully connected layers
FC1, FC2 and FC3, has 512, 512 and C numbers of nodes respectively. Hence, the network con-
figuration matches NW to make the comparison fair. During the prediction stage, the recording
level score for each class is obtained by applying max() or avg() over segment scores. Finally,
averaging across all 3 logmel spectra features, similar to the weak label case is done.

4.3.4 Metrics and Experimental Setup

Similar to [Hershey et al., 2017], we will use Area under ROC curves (AUC) and Average Precision
(AP) as performance metrics (Section 1.6). We will report Mean AUC (MAUC) and Mean AP
(MAP) over all classes as the overall metrics for comparison.

Pytorch1 is for implementation of our neural networks. The network is trained with Adam
optimizer [Kingma and Ba, 2014]. The validation set is used for tuning hyperparameters such as
learning rate.

4.3.5 Urbansounds Results

Table 4.1 compares NW and Nslat. Table 4.1 shows that the proposed weak label learning network
outperforms the strong label assumption training by a considerable margin. For networks trained
on just 1024 point FFT scale features, NW outperforms Nslat by 11.5% (relative) in terms of MAP
and 3.45% (relative) in terms of MAUC. Augmenting the data by adding features at different
scales is helpful for both NW and Nslat. For NW , the MAP goes up by 2.65% by adding 2048
point FFT features and by 5.6% when trained on features at all three scales.

The results presented in Table 4.1 for NW uses avg() as mapping function g. Table 4.2
compares the results for NW using max() and avg() as mapping function. All 3 scales of features
are used. We observe that avg() mapping outperforms the max() mapping. The sparse weighing

1https://pytorch.org/

65

MAP MAUC

g = max() g = avg() g = max() g = avg()

0.700 0.750 0.904 0.935

Table 4.2: Performance of NW for different mapping functions

Event AP AUC
Name Nslat NW Nslat NW

Air Conditioner 0.507 0.477 0.807 0.817

Car Horn 0.693 0.834 0.884 0.957

Children Playing 0.774 0.879 0.951 0.978

Dog Bark 0.859 0.918 0.911 0.944

Drilling 0.669 0.622 0.931 0.922

Engine Idling 0.444 0.540 0.795 0.871

Gunshot 0.832 0.929 0.983 0.990

Jackhammer 0.685 0.703 0.940 0.939

Siren 0.703 0.694 0.902 0.954

Street Music 0.800 0.907 0.949 0.978

Mean 0.697 0.750 0.905 0.935

Table 4.3: AP and AUC for each event using Nslat and NW

MAP MAUC

128 (1.5 sec) 64 (0.75 sec) 128 (1.5 sec) 64 (0.75 sec)

0.750 0.712 0.935 0.922

Table 4.4: Performance of NW designed for different mapping functions

through max() can be thought of as picking one segment for each class which contributes to
the loss function computation and updates. The avg() function on the other hand, allows all
segments to contribute to the recording level outputs and hence loss and updates.

Table 4.3 shows event wise results for NW and Nslat. For most events NW outperforms Nslat.
The difference is considerable for several events, up to 20− 21% for events such as Car Horn and
Engine Idling. Interestingly, there are a couple of events, Air Conditioner and Engine Idling for
which there is a small drop in performance and the network with strong label assumption training
does better. Overall, however, training the network with the proposed method outperforms Nslat
by around 7.6%.

The segment size at which the outputs are predicted is another factor which can play a role
in the performance. In the previous tables, the network was designed for segment size 128 frames
≈ 1.5 seconds. Table 4.4, compares the results for NW designed for segment size of 128 frames
and of 64 frames ≈ 0.75 seconds. The network with segment size 64 frames is designed by
changing the filter size in layer F1 to 2 × 4. Overall, the 128 frames segment size performs
better than 64 frames segment size by about 5.3% in terms of the MAP. However, the role of
segment size can be event specific. Air Conditioner, which has long-term more or less stationary
characteristics, is better with longer segment size. 1.5 s segment size is better than 0.75 s segment
size by more than 35% for Air Conditioner. At the same time, for events such as Engine Idling

66

Figure 4.5: Comparison of Computational time for NW and Nslat
NW is almost twice faster compared to Nslat during both training and inference.

Event AP AUC
Name Nslat NW Nslat NW

Air Conditioner 0.106 0.207 0.610 0.720

Car Horn 0.269 0.440 0.773 0.854

Children Playing 0.347 0.317 0.828 0.893

Dog Bark 0.704 0.800 0.944 0.977

Drilling 0.151 0.296 0.736 0.801

Engine Idling 0.371 0.424 0.773 0.796

Gunshot 0.589 0.755 0.795 0.927

Jackhammer 0.101 0.135 0.510 0.668

Siren 0.753 0.730 0.852 0.805

Mean 0.377 0.456 0.757 0.827

Table 4.5: AP and AUC for each event using Nslat and NW with YouTube Training

and Siren which have shorter salient characteristics, 0.75 s segment size is better than 1.5 s
segment size by around 18% and 9% respectively.

Computational Expense: Figure 4.5 shows the average training and inference time com-
parison for the two methods. The training time is normalized for comparison. NW is over 45%
faster than Nslat during training and more than 55% during inference. It shows that the proposed
NW is not only better and more convenient (no segmentation or other such preprocessing) but is
also computationally much better.

4.3.6 YouTube Results

Table 4.5 shows the performance of the networks when trained on the webly labeled YouTube
recordings. The manually labeled Audioset data serves as the test set. The results correspond
to training and testing with features at all three scales. Once again we see that NW outperforms
Nslat. For several events such as Air Conditioner, Car Horn, Drilling improvements in the range
of 63% to 96% in relative terms for AP can be seen. The MAP over all events improves by around
21%. This gain is considerably higher than that observed in US dataset. This shows that for

67

Event AP AUC
Name NW (US) NW (YT) NW (US) NW (YT)

Air Conditioner 0.155 0.207 0.713 0.720

Car Horn 0.280 0.440 0.816 0.854

Children Playing 0.631 0.317 0.937 0.893

Dog Bark 0.610 0.800 0.928 0.977

Drilling 0.215 0.296 0.777 0.801

Engine Idling 0.373 0.424 0.738 0.796

Gunshot 0.699 0.755 0.888 0.927

Jackhammer 0.113 0.135 0.586 0.668

Siren 0.804 0.730 0.858 0.805

Mean 0.418 0.456 0.805 0.827

Table 4.6: Comparing NW trained on Urbansound and on YouTube training set.

the webly labeled data weak label training is crucial and strong label assumptions should not be
made.

Note that, the overall performance numbers are much lower compared to results on the Ur-
bansounds dataset, where the recordings are relatively cleaner, and the presence of noise and
other events are relatively low. The “label noise” is absent as the labels are manually obtained.
The YouTube training and test set, on the other hand, are much noisier and contains other audio
events which makes them more challenging as far as recognition is concerned. The training set
most likely contains label noise as no manual checking was performed.

We compare the performance of the model trained on Urbansounds dataset to that of the
model trained on YouTube on Audioset test set. Table 4.6 shows this comparison. We notice
that the YouTube training set which is the only webly labeled, without any manual labeling effort
outperforms the network trained on Urbansounds dataset. A relative improvement of around 9%
in terms of MAP and 2.5% in terms of MAUC is observed. For several events the difference is
much higher, for example for Car Horn and Dog Bark the improvement is by more than 57%
and 31% respectively. However, there are events such as Children Playing and Siren, where the
network trained on Urbansounds set is better compared to that trained on YouTube. So we see
that recognizing events in unstructured recordings such as those on YouTube, it is important
to train on recordings of such nature. However, training from YouTube data without manual
labeling raises additional challenges. We will investigate those later in this chapter.

4.3.7 Temporal Localization

Even though we learn from weakly labeled data, where temporal information is not available
during training, it is often essential to locate events during the inference stage. The previous
results show recognition at the recording level. Computing objective measures for temporal
localization requires ground truth locations of events in the recording. Neither Urbansounds test
set nor Audioset test accurately provides ground truth locations of events. Urbansounds provides
only partial ground truth locations, again not allowing us to compute any objective measures.

The segment level predictions at layer F3 in NW can be easily mapped back to the frame
level predictions since we can map back each segment level output to the receptive fields in input
recordings. Figure 4.6 shows a couple of examples of localization as given by our method. The

68

Figure 4.6: Temporal Localization Examples. Left: An Example of Siren Sound, Right: An
Example of Gunshot Sound.

Figure 4.7: Number of examples for different sound events in training (Red) and test (Green)
sets.

red line shows the output activation corresponding to the sound event as it changes with time.
Note that as the event starts the activation goes up for the duration of the event. This variation
of activation thus shows that the method can locate events in the recordings.

4.4 Experiments and Results: Large Vocabulary Weakly Labeled
Learning

We now describe experiments and results on a large vocabulary weakly labeled dataset. We
use Audioset [Gemmeke et al., 2013] , which consists of weakly labeled examples for 527 sound
events. To the best of our knowledge, this is currently the largest number of sound events in
any publicly available dataset. The dataset consists of weakly labeled recordings from YouTube.
The labeling was done manually, and the maximum duration of the recording is 10 seconds. The
dataset consists of a total of over 2 million recordings and comes pre-divided into training and
evaluation sets. We will use the Balanced Training set of Audioset2 for training, Eval set for
evaluation and a subset of Unbalanced training set as validation set. Henceforth, we will refer to
these sets as the training, evaluation (or test) and validation sets.

The training set consists of a total of around 22,000 audio recordings. Some of the videos
were not available for download at the time we downloaded them. Most of the recordings are of
10 seconds duration, although a few are less than 10 seconds as well. The total training data is
approximately 60 hours of audio data. Test set consists of a total of around 20,000 recordings.
The training and test sets consist of at least 59 examples per event. Audioset is a multi-label

2https://research.google.com/audioset/

69

Figure 4.8: Number of Events vs Number of Examples (Distribution of examples and events) (
Red) and eval (Green) sets

Figure 4.9: Network Architecture for Large Vocabulary Experiments (4.4.1)

dataset and on an average 2.7 labels per recording are present. Figure 4.7 and 4.8 shows the
number of examples for each event and the distribution of examples with events. From Fig. 4.8,
we can see that for over 50 sound events the number of recordings available for training are more
than 100.

4.4.1 Experiments with Logmel Acoustic Features

All audio recordings are sampled at 44.1 KHz sampling frequency. 128 mel bands are used. A
window size of 23 ms (1024 point FFT) and overlap of 11.5 ms (512 point hop size) is used for
obtaining mel features. Hence, the input to the networks are recordings, R, represented by their
logmel spectrograms (R ∈ RN×128). All experiments are done in Pytorch. Adam optimization is
again used for training networks. The validation set is used for tuning parameters and selecting
the best model. One again average precision (AP) and area under ROC curves (AUC) will be
used as performance metrics. Mean average precision (MAP) and Mean area under ROC curves
(MAUC) over all classes will be used as overall evaluation metrics.

70

MAUC MAP

N slat
A Nwlat

A N slat
A Nwlat

A

0.915 0.927 (+1.3%) 0.167 0.213 (+27.5%)

Train Time Inference Time

N slat
A Nwlat

A N slat
A Nwlat

A

1.0 0.61 (-39%) 1.0 0.67 (-33%)

Table 4.7: WLAT vs SLAT on Audioset

Comparison of performances (Left) and computational times (Right) of N slat
A and Nwlat

A

Network Architecture

Figure 4.9 shows the network architecture and the details of different layers. The blocks of layers
B1 to B5 consists of two convolutional layers followed by a max pooling layer. B6 consists of one
convolutional layer, followed by a max pooling layer. The convolutional layers consist of batch
normalization before non-linear activation function. ReLU (max(0, x)) [Nair and Hinton, 2010]
is used in all layers from B1 to B6. 3 × 3 convolutional filters are used in all layers from B1 to
B6. Stride and padding values are fixed to 1. The number of filters employed in different blocks
are as follows, {B1: 16, B2:32, B3:64, B4:128, B5:256, B6:512 }. Note that B1 to B6 consists
of two convolutional layers followed by max pooling. Both convolutional layers in these blocks
employ the same number of filters. The max pooling operation is applied over a window of size
2× 2. Logmel inputs are treated as single channel inputs.

F1 is a convolutional layer with 1024 filters of size 2×2. Once again ReLU activation is used.
Stride is again fixed to 1, and no padding is used. Layer F2 represents segment level output.
It is a convolutional layer consisting of C filters of size 1 × 1. C is the number of classes in
the dataset. Sigmoid non-linear activation function is used at this secondary output layer. We
again use the linear mapping function g, through dense ~w’s. This is again implemented through
a pooling player, which performs mean pooling along the segment level output. Note that, this
network is designed for 128 frames segment size and 64 frames segment hop size. These sizes
approximately correspond to 1.5 seconds and 0.75 seconds duration respectively. We will refer to
this network as Nwlat

A .

Once again, we will compare performance with an analogous network trained through SLAT.
We will refer to this network as N slat

A . Nwlat
A is similar to Nwlat

A except that F1 and F2 are now
fully connected layers of size 1024 and CS. Training is done with fixed size segments of 128 logmel
frames as inputs, segments overlap by 64 frames. The loss is computed for each input segment
by using recording level labels.

Results

Table 4.7 shows Mean AUC (MAUC) and Mean AP (MAP) over all 527 classes in Audioset.
An absolute improvement of 1.2 (1.3% relative) in MAUC and 4.6 (27.5% relative) in MAP is
obtained using Nwlat

A . The top right table shows relative computational times, normalized for
comparison. N slat

A is 33% faster on an average during inference. Hence, more suitable for real
applications. During training, on an average it is 39% faster for 1 full pass over training data.
Once again, it establishes that the proposed WLAT method not only outperforms but is also
computationally better than SLAT.

Table 4.8 shows comparison for 10 sound events for which N slat
A achieved least and highest

APs. For low performance classes, on an average Nwlat
A doubles the AP (0.0097 to 0.0203). For

easier sound classes 8.5% relative improvement is obtained using Nwlat
A .

71

Lowest 10 Highest 10

Event N slat
A Nwlat

A Event N slat
A Nwlat

A

Scrape 0.0058 0.0092 Music 0.728 0.749

Crackle 0.0078 0.0097 Siren (Civil Defense) 0.671 0.641

Man Speaking 0.0080 0.0202 Bagpipes 0.646 0.786

Mouse 0.0092 0.0368 Speech 0.631 0.661

Buzz 0.0095 0.0077 Purr (Cats) 0.575 0.600

Squish 0.0102 0.0122 BattleCry 0.575 0.651

Gurgling 0.0111 0.0125 Heartbeat 0.559 0.569

Door 0.0115 0.0685 Harpsichord 0.544 0.630

Noise 0.0116 0.0107 Ringing (Campanology) 0.538 0.690

Zipper 0.0121 0.0161 Timpani 0.538 0.528

Mean 0.0097 0.0203 Mean 0.600 0.651

Table 4.8: AP comparison for 10 sound events with lowest and highest APs using baseline N slat
S .

Figure 4.10: Temporal Localization Examples from Audioset.

Temporal Localization

Audioset does not provide temporal information of events, and hence objective measures for tem-
poral localization cannot be computed. Figure 4.10 shows some examples of temporal localization
from Audioset test set. The name of the sound event labeled in the recording is shown below
each recording. The red line in each figure shows the output for that class with time. We observe
that the output for the event responds to the start and end of the event. Note that segment and
hop sizes can affect the localization of the event.

72

Figure 4.11: Network Architecture for Large Vocabulary Experiments on Embeddings (4.5)

4.5 Experiments and Results: Google Embeddings and Atten-
tion Like Mapping Functions

Google provides precomputed embeddings for the Audioset dataset. The embeddings were ob-
tained by first training a VGG-like network on a massive amount of audio recordings from
YouTube. The dataset used to train this VGG-like model contains over 5 million hours of audio
data. The details of the embeddings can be found in [Gemmeke et al., 2017]3. The embeddings
are 128-dimensional quantized vectors. The embeddings correspond to every 1 second of audio
recording. Hence, a 10 seconds audio recording will have an embedding vector for every 1 second,
leading to 10×128 matrix representation. Hence, in this case, each audio recording is represented
by R ∈ RN×128, where N is the number of embedding vectors for the recording.

4.5.1 Network Architecture

Figure 4.11 shows the network architecture and the details of the different layers used for training
with embedding representations. The architecture is in a similar vein to the one used for logmel
spectrograms. The blocks of layers B1 to B4 consists of two convolutional layers followed by a
max pooling layer. The structure within these blocks is the same as the one in Figure 4.9, each
convolutional layer has batch normalization followed by ReLU activation. The filter or kernel
size, stride, and padding are again 3× 3, 1 and 1 respectively. The number of filters employed in
these blocks is as follows, {B1: 64, B2:128, B3:256, B4:512 }. Both convolutional layers in these
blocks employ the same number of filters. The max pooling operation is applied over a window
of size 1× 2 which is moved with a stride of 1× 2.

F1 is a convolutional layer with 1024 filters of size 1×8. Once again ReLU activation is used.
Stride is again fixed to 1, and no padding is used. Layer F2 is again a convolutional layer with
a total 1024 filters and the size of filters are 1 × 1. F1 and F2 also apply batch normalization
before the non-linear activations. F3 is the segment level output layer. It is a convolutional layer
with C filters of size 1× 1 and sigmoid non-linear activations.

3https://github.com/tensorflow/models/tree/master/research/audioset

73

Method MAP MAUC

ResNet-Attention [Xu et al., 2017] 0.220 0.935

ResNet-SPDA [Zhang et al., 2016] 0.219 0.936

M&mnet [Chou et al., 2018] 0.226 0.938

M&mnet (Multiscale) [Chou et al., 2018] 0.232 0.940

Nwlat
D 0.228 0.927

Nwlat
S 0.226 0.935

Nwlat
C 0.231 0.931

Table 4.9: Comparison different methods
Comparison of performances of WLAT with different mapping functions and other works

We will consider three different mapping functions. g, with dense ~w’s which takes an average
across all segments to map segment level outputs to recording level outputs. We will also employ
the attention like mapping functions. We use g() with single learnable ~w as well as g() with class
dependent ~w. We observed that regularizing these parameters helps in achieving slightly better
performances. The regularization is done by adding L2 or L1 norm terms of these ~w parameters
to the loss term. We will refer to the networks as Nwlat

D , Nwlat
S and Nwlat

C for networks using
mapping functions with dense fixed ~w’s, single learnable ~w and class dependent learnable ~w’s,
respectively.

4.5.2 Results

Table 4.9 shows the results using the embeddings as representations for the audio recordings
and the three different networks. We also compare our performance with other methods. The
performance numbers for other methods have been taken from [Chou et al., 2018]. Our method
performs on par or better than most of the other methods. Note that ResNet-Attention [Xu
et al., 2017], ResNet-SPDA [Zhang et al., 2016], M&mnet [Chou et al., 2018], are all using some
form of attention in training the network on the weakly labeled Audioset. M&mnet (Multiscale)
relies on features at multiple scales. M&mnet without multi-scale features is outperformed by
our method.

Overall our proposed method is able to achieve state of the art performance. Our proposed
idea of first producing segment level outputs and then using a mapping function to map these
segment level outputs to recording level outputs is entirely generic and can be applied with any
network architecture. Other forms of mapping functions can be developed which might lead to
better performance.

4.6 Closer Look at Weakly Labeled Learning

The previous sections presented deep learning methods for audio event detection using weakly
labeled data. We presented a generic framework for training deep convolutional neural networks
using weakly labeled audio data. We showed evaluated our performance on large-scale audio
event detection problem as well as a webly labeled dataset, where the weak labels were obtained
automatically without any manual effort. In summary, we showed that deep learning methods
can be successfully applied to audio event detection using weekly labeled dataset.

74

However, weakly labeled learning comes with its own set of challenges. A deeper understand-
ing and analysis of the problems and challenges arising in large-scale AED using weak labels is
necessary. In this section, we take a closer look at AED using weakly labeled data. We define,
study and analyze some of the factors which affect learning from weakly labeled data [Shah et al.,
2018b]. We describe different ways in which “label noise” naturally manifests itself into weak
label paradigm for sound events. These characteristics of weak label learning are then analyzed
empirically to understand how they affect the generalization capabilities of the trained model.
This analysis and understanding are not only desirable but necessary for further development of
audio event detection using weakly labeled data.

The basis of this study lies in the primary advantage of weakly labeled data. The primary
significance of weak label learning is that it shows a way to scale AED by easing the data labeling
process. This includes mining data from the web and automatically labeling them without human
labelers. However, mining multimedia data from the web for sound events often leads to noise
in the training data. This aspect of weakly supervised learning has been explored in the field of
computer vision, [Feng et al., 2014, Lu et al., 2017, Tang et al., 2009] to cite a few.

However, for sounds, the impact and relevance of factors such as noise in the data are yet
to be analyzed, understood and explored. For sounds, weakly labeled data from the web (such
as YouTube) contains noise primarily in two forms, Signal noise and Label noise. We use the
term signal noise to refer to a variety of signal degrading factors. Often, consumer-generated
web audios or videos are recorded under unstructured conditions. Occurrences of sound events
of interests are often corrupted by either noise and/or events of which are not of interests. Col-
lectively referring to them as signal noise, this signal noise does make the problem much more
challenging. The focus here, however, is on analyzing the other type noise in weakly supervised
learning of sounds, namely, the Label noise.

Label noise in weakly labeled audio (video) occurs naturally in different ways. We use the
term “label noise” to loosely refer to multiple labeling related factors which affect learning in
weakly supervised learning. Here, we consider two important factors. The first one is the Label
Density. Label density signifies the portion of the recording (out of the total length) during
which the tagged sound event is actually present in the recording. A recording with lower label
density is a weakly representation of a sound event compared to another recording with high label
density.

The second form of label noise comes from the actual wrong labeling of the audio recordings.
Sound events can often be hard to interpret, and this might lead to wrong labels, even when the
labeling is done manually. This becomes a bigger problem when we work on a large scale, with
a large number of audio events. For example, Audioset which have been manually labeled; the
quality of the labels has been roughly estimated to be less than 90%4 for several events. The
problem can grow by several folds when we try to mine the data directly from the web and obtain
weak labels by exploiting the associated metadata. In this case, a considerable portion of the
weak labels is expected to be wrong. We refer to this form of label noise as label corruption noise.

Clearly, label density noise is an inherent characteristic of weak label learning. Corrupt labels
can also easily occur, and hence often the two forms of noises are simultaneously present. This is
especially true for weakly labeled data obtained from the web in which no manual labeling effort
was employed. In the following sections, we use the network Nwlat

A described in Section 4.4.1 for
analysis. The input acoustic features are also logmel spectrograms, same as before.

4https://research.google.com/audioset/dataset/index.html

75

4.6.1 Label Density

Label density signifies how much of a given audio recording actually contains the tagged event.
In weakly labeled data, we only know whether an event is present or not. We do not know
what portion of the recording contains the marked event. Hence, the concept of label density and
correspondingly label density noise is naturally embodied into weakly label learning. We formally
define label density (LD) of a recording R with respect to an audio event E as

LDe
R =

Duration (seconds) for which E ispresent in R

Length (seconds) of R
(4.10)

Correspondingly, label density noise (LDN) is defined as LDN e
R = 1−LDe

R. Label density noise
is a measure of weakness of a recording with respect to a given event. In other words, how weak
are the labels for a given weakly labeled audio recording? A one-minute long audio recording
where a sound event is present for only a couple of seconds is a much weaker representation of the
event, compared to a similar audio recording where the event is present for almost three-quarters
of the duration of the recording.

Understanding how label density affects the learning process in a weakly supervised paradigm
is important. However, designing an evaluation strategy to measure the impact of label density on
the learning process is not straightforward. Any such method would require one to measure the
label density of all recordings with respect to each event. This would require manually obtaining
the duration for which a given event is present in the audio recording. Clearly, this cannot be
done for a large scale dataset such as Audioset. Hence, we consider an alternative view on label
density, which allows us to study its impact on weakly labeled audio event detection empirically.

The alternate view is based on the intuition that if we mine weakly labeled audio from the
web, then the expected density of labels for a given audio event will be lower for long duration
audio recordings. In other words, on average long duration audio recordings will have higher
“label density noise” compared to shorter audio recordings.

Taking this alternate view, we design our experiment as follows. We consider the Audioset
dataset for experiments. Audioset provides weak labels for YouTube audio recordings. Weak
labeling was manually done on audio recordings of 10 seconds duration (a small fraction are
of less than 10 seconds). These 10 seconds audio segments were actually obtained from longer
YouTube videos.

Let us represent the Audioset training data by tuples of the forms (Ri, Y T iid, S
i, Ei, Li). Ri

is the ith recording in Audioset and Y T iid is the YouTube id of Ri. Si is the start time of Ri in
Y T iid and Ei is the end time of Ri in Y T iid. That is Ri is a portion of the video Y T iid on YouTube,
starting at Si and ending at Ei. Ri’s are weakly labeled (manually). Li represents the set of
audio events present in Ri. Hence, this labeling tells us that the set of events in Li are somewhere
present in Y T iid between Si and Ei. We request the readers to take a quick look at the label sets
provided by Audioset5 to understand this aspect.

Ri’s are mostly 10 seconds long recordings and will have label densities likely on the higher
side. For each Y T iid in training set, we consider the audio from Si−10 seconds to Ei+10 seconds.
Clearly, the set of Li events are present in this audio as well, and hence we obtain 30 seconds
long weakly labeled audio recordings. Those Y T iid where the total duration of YouTube video is
less than 30 seconds, we simply consider the whole recording. Henceforth, we refer to this weakly
labeled set as Audioset-At-30. It is expected that on an average the label density of events in
Audioset-At-30 will be lower than Audioset.

5https://research.google.com/audioset/download.html

76

Table 4.10: Effect of label density on performance

Training Set MAP MAUC

Audioset 0.213 0.927

Audioset-At-30 0.172 (-19.2%) 0.904 (-2.5%)

Audioset-At-60 0.165 (-22.5%) 0.908 (-2.9%)

Similarly, we obtain Audioset-At-60 by considering Si−25 seconds to Ei+25 seconds for each
(Y T iid, S

i, Ei, Li). Once again, Y T iid which are of less than 60 seconds are taken entirely. Audioset-
At-60 is expected to have even lower label density or higher label density noise, compared to
Audioset-At-30. We train our weakly labeled method on all 3 sets to understand how label
density affects the learning process. Since our networks are designed to handle audio recordings
of variable length, variable lengths of recordings is not a problem.

Analyzing Label Density

The experimental setup for this part follows the procedure outlined above. For the training
set in the Audioset, we created two additional sets, namely, Audioset-At-30 and Audioset-At-
60. Audioset-At-30 and Audioset-At-60 are approximately 180 and 360 hours of audio data
respectively. These two additional training sets have higher label density noise compared to the
original Audioset. We train Nwlat

A on original Audioset, Audioset-At-30 and Audioset-At-60.
The validation and evaluation sets are kept the same as before. The original Audioset gives label
density at 10 seconds segment. Hence, we are analyzing the performance of models trained on
datasets for which weak labels are available at 10 seconds, 30 seconds and 60 seconds granularity.

Table 4.10 shows the effect of label density change in MAP and MAUC numbers. The MAP
value decreases by a sharp 12% in relative terms as we move from weak labels at 10 seconds long
audio recordings in the Audioset to 30 seconds long audio recordings in Audioset-At-30. The
drop in performance is evident in both MAP and MAUC numbers. Going from 30 to 60 seconds
leads to an additional drop of 4% in the MAP. No significant change in MAUC is observed. This
shows an interesting behavior. As we increase the recording durations from 10 to 30 seconds, the
model is not able to learn well from relatively reduced label density. One possible explanation
might be that increasing the data leads to model getting more robust. Note that the test set in
all cases are the same. Larger training data have been known to improve the robustness of deep
learning models. Hence, even though the performance does go down due to reduced label density,
training on a larger amount of data reduces the impact to a certain extent. A deeper analysis in
the future might give better insights.

Table 4.11 shows 10 events for which maximum drop (relative) in AP is observed for Audioset-
At-30 compared to the Audioset. For the Table 4.11, we considered only those whose AP is more
than the MAP. Similarly, Table 4.12 shows the same for Audioset-At-60. For these ten events, on
an average around 62% drop in AP is seen for Audioset-At-30 and 65% for Audioset-At-60. Note
that the set of events for which maximal drop is observed for Audioset-At-30 and Audioset-At-60
are different. Interestingly, most of the events in these two lists, except for Pink Noise, Music of
Bollywood, Music Africa, have very unique and specific characteristics and are easily identifiable
by humans. One can then argue that such events are more prone to suffer from label density
noise.

77

Table 4.11: 10 Audio Events with highest drop in AP for Audioset-At-30 (w.r.t Audioset)

Events Audioset - AP, (AUC) Audioset-At-30 - AP, (AUC) AP Drop (% Drop)

Speech synthesizer 0.225, (0.953) 0.037, (0.882) 0.187, (83.506)

Air horn truck horn 0.290, (0.979) 0.051, (0.950) 0.239, (82.310)

Vehicle horn, honking 0.238, (0.955) 0.084, (0.923) 0.155, (64.913)

Afrobeat 0.261, (0.977) 0.104, (0.967) 0.157, (60.088)

Whip 0.274, (0.927) 0.112, (0.876) 0.162, (59.117)

Chopping (food) 0.285, (0.920) 0.117, (0.886) 0.168, (58.887)

Music of Bollywood 0.309, (0.933) 0.140, (0.933) 0.169, (54.765)

Sizzle 0.339, (0.976) 0.155, (0.958) 0.183, (54.122)

Toot 0.290, (0.963) 0.137, (0.961) 0.153, (52.813)

Pour 0.238, (0.957) 0.115, (0.940) 0.123, (51.717)

Mean 0.275, (0.954) 0.105, (0.927) 0.170, (62.224)

Table 4.12: 10 Audio Events with highest drop in AP for Audioset-At-60 (w.r.t Audioset)

Sound Events Audioset - AP, (AUC) Audioset-At-60 - AP, (AUC) AP Drop (% Drop)

Chopping (food) 0.285, (0.920) 0.064, (0.871) 0.220, (77.348)

Pink noise 0.349, (0.974) 0.093, (0.942) 0.257, (73.448)

Cash register 0.205, (0.917) 0.056, (0.918) 0.149, (72.722)

Whip 0.274, (0.927) 0.078, (0.877) 0.196, (71.705)

Music of Africa 0.225, (0.966) 0.082, (0.919) 0.143, (63.512)

Keyboard (musical) 0.303, (0.955) 0.116, (0.907) 0.186, (61.524)

Afrobeat 0.261, (0.977) 0.102, (0.955) 0.159, (61.038)

Speech synthesizer 0.225, (0.953) 0.089, (0.905) 0.136, (60.401)

Electronic organ 0.205, (0.916) 0.089, (0.847) 0.116, (56.491)

Artillery fire 0.218, (0.963) 0.102, (0.939) 0.117, (53.482)

Mean 0.255, (0.947) 0.087, (0.908) 0.168, (65.167)

4.6.2 Corrupted Labels Noise

Corrupted labels or wrong labels is possible due to a variety of reasons. Sound events are often
hard to interpret which might present difficulties in labeling recordings even when manually
done. This is especially true for YouTube quality audio recordings where “signal noise” can
create further difficulties in understanding and labeling the audio events. For the Audioset, the
authors themselves checked a random sample of 10 recordings for each event and provided a
confidence on the correctness of quality of labels 6. Interestingly, this confidence is less than 90%
for several events. This problem is hard to address though; manual labeling is the best one can
do as far as labeling is concerned. Hence, we assume that labels of Audioset are not corrupted
and have 0 label noise.

However, quality of labels is adversely affected to a much larger extent when we mine audio
from the web and automate the weak labeling by using metadata associated with audios (videos).
Both false positive, as well as the false negative assignment of labels, are possible. That is, we
may mark an event to be present in the recording when it is not. Similarly, we might miss the
presence of an event and mark the recording as not containing the given sound event.

We analyze this form of label noise by corrupting the labels in Audioset. We treat the labels
from Audioset as perfect or at 0% corruption. We note that this is actually not true. However,
Audioset has been manually labeled, and it is the best one can possibly do for a collection of
over 500 sound events. Hence, we consider Audioset as having perfect labels without any noise.

6https://research.google.com/audioset/dataset/index.html

78

Figure 4.12: Effect of corruption of labels on performance
x-axis represents corruption level r in %. y-axis show MAP and % reduction in MAP compared

to no corruption.

Table 4.13: Weakly Labeled Audio in the Wild. Comparison with Audioset

Training Set MAP MAUC

Audioset-40 0.419 0.913

YouTube-Wild 0.127 0.700

We then gradually increase the amount of corrupted labels by manually corrupting the assigned
labels in Audioset. More specifically, for a portion of the labeled tuples (Y T iid, S

i, Ei, Li), we
corrupt Li by changing the events in Li. The corruption process is done in a stratified way, such
that around r% labels for each event get corrupted. r% includes both false positive and false
negative label noises. Moreover, we perform the corruption in a way such that the number of
recordings marked to contain the recording remains consistent with respect to original labels. We
perform analysis on different values of r.

Analysis of Labels Corruption

The analysis of label noise in terms of corrupted labels follows the procedure outlined above. We
use 9 different values of r, the level of artificially induced corruptions in labels. Correspondingly, 9
different training sets are obtained. Nwlat

A is trained on each of these training sets. The validation
and evaluation sets remain as before. Fig. 4.12 shows MAP values for different values of r. r = 0
corresponds to the original training set from Audioset.

Adding around 2% noise in labels leads to around 15.9% drop in MAP performance. A
further 8% drop in performance occurs by adding an extra percentage of noise. As the noise keep
increasing, the performance keeps going down. At around 30% noise, the model goes on to loose
as much as 38.5% in performance. At 50% noise, the model ends up losing 43.2% in performance.

Overall, we can state that the corruption of labels is a crucial factor which can adversely affect
the performance of the system. Depending on the amount of label noise a considerable drop in
performance is possible. Still, a deep learning model like WLAT seems robust to a certain extent.
Future works on AED using weak labels, especially those relying on YouTube data should factor
in the possibility of corrupted labels and model accordingly.

79

Table 4.14: Best 10 and Worst 10 performing events (ordered by AP) for YouTube-Wild

Events (Best 10) YouTube-Wild Audioset-40 Events (worst 10) YouTube-Wild Audioset-40

Guitar 0.316, (0.748) 0.755, (0.961) Engine 0.048, (0.488) 0.330, (0.896)

Siren 0.291, (0.731) 0.735, (0.970) Rail transport 0.042, (0.564) 0.441, (0.929)

Animal 0.289, (0.712) 0.579, (0.882) Violin, fiddle 0.041, (0.692) 0.446, (0.945)

Chicken-rooster 0.268, (0.824) 0.281, (0.908) Tools 0.039, (0.540) 0.356, (0.872)

Vehicle 0.243, (0.566) 0.482, (0.828) Bus 0.039, (0.779) 0.052, (0.818)

Emergency vehicle 0.234, (0.728) 0.613, (0.961) Train 0.035, (0.476) 0.427, (0.925)

Laughter 0.233, (0.881) 0.612, (0.960) Motorboat, speedboat 0.035, (0.732) 0.060, (0.845)

Drum 0.224, (0.747) 0.572, (0.948) Truck 0.032, (0.512) 0.134, (0.878)

Drum kit 0.218, (0.855) 0.530, (0.974) Race car, auto racing 0.030, (0.622) 0.157, (0.884)

Crowd 0.191, (0.693) 0.681, (0.979) Motorcycle 0.026, (0.599) 0.066, (0.826)

Mean 0.251, (0.748) 0.584, (0.937) Mean 0.037, (0.600) 0.247, (0.882)

4.6.3 Weakly Labeled Audio In the Wild

We now consider the situation where both of the above forms of label noises can occur in abun-
dance. We directly obtain audio from YouTube for a given sound event and then train our model
using these data. We collect the data using a very simple approach. The videos are retrieved by
using search queries of the forms “<sound event name > sound” on YouTube. Adding the word
“sound” leads to a considerable improvement in the retrieval of relevant videos on YouTube.

For each event, we consider the top 50 retrieved videos (under 4 minutes duration) and mark
these to contain the event. If a video is retrieved for multiple events, they are accordingly multi-
labeled. We call this training set YouTube-wild. In YouTube-wild label noises in all forms occur.
Since the retrieval is not perfect, marking all top 50 videos to contain the event introduces false
positives in labels, implying we are assigning a positive label to the recording even when the
event is not present. False negative labels also get naturally introduced in the process, as a
retrieved video V for an event, e1, might contain another event, e2, as well. However, unless V
was retrieved for e2 also, we do not know this, and we mark e2 to be not present in V . Label
density can again be very low for these unverified recordings.

Several of the events in Audioset have vague names and broad meaning. The automated
labeling process described in the previous paragraph leads to mostly non-relevant results. Hence,
for this part, we worked with a smaller subset of events; selecting those who have a more definite
description and meaning. That is, those for which retrieval leads to somewhat meaningful and
relevant set of audio recordings. The selection process also factors in the total number of examples
available for the event in Audioset. We select events for which more examples are available in
Audioset. We do this because we wanted to analyze how YouTube-wild compares with Audioset,
which is manually labeled. It is desirable that we work with events for which a higher number
of examples are available in Audioset, to better understand where YouTube-wild training stand
in comparison to Audioset. YouTube-wild is collected and labeled without manual effort and
contains long duration audio recordings, against Audioset, which is manually labeled, and weak
labels are over relatively short 10 seconds recordings. Since the source of both is YouTube, signal
noise is expected to be similar. The two forms of “label noise”, however, are going to make the
most difference.

Analyzing YouTube-Wild

We selected a total of 40 sound events and obtained training examples for them from YouTube
by the process described previously. This set, called YouTube-Wild is used as the training set for

80

Table 4.15: 10 Events with highest relative drop in performance

Events Audioset-40 - AP (AUC) YouTube-Wild AP Drop (% Drop)

Train 0.427, (0.925) 0.035, (0.476) 0.392, (91.861)

Violin fiddle 0.446, (0.945) 0.041, (0.692) 0.405, (90.727)

Rail transport 0.441, (0.929) 0.042, (0.564) 0.399, (90.386)

Singing 0.659, (0.947) 0.089, (0.529) 0.569, (86.420)

Keyboard (musical) 0.568, (0.949) 0.084, (0.735) 0.484, (85.168)

Railroad car, train wagon 0.451, (0.934) 0.071, (0.697) 0.380, (84.313)

Water 0.616, (0.935) 0.118, (0.621) 0.498, (80.817)

Bass drum 0.541, (0.973) 0.119, (0.782) 0.422, (78.070)

Cymbal 0.577, (0.977) 0.151, (0.833) 0.426, (73.911)

Pigeon, dove 0.526, (0.956) 0.140, (0.771) 0.386, (73.388)

Mean 0.525, (0.947) 0.089, (0.670) 0.436, (83.506)

training Nwlat
A . It consists of a total of 1906 videos for 40 sound events, totaling around 60 hours

of audio. The average duration of audio recordings is around 1.92 minutes, with a maximum
duration of 240 seconds. In comparison, Audioset has mostly 10 seconds long audio recordings.
All audio recordings are sampled to 44.1 kHz sampling rate. YouTube-Wild training list will be
released and made available for future works in this area. We refer to this subset of Audioset
with these 40 sounds as Audioset-40.

We trainNwlat
A (with C = 40) on YouTube-wild. We also trainNwlat

A (C = 40) on Audioset-40.
The subset of Audioset validation and evaluation sets which contains only recordings belonging
to only these 40 events are used as validation and evaluation set in these experiments.

Table 4.13 compares performance on Audioset-40 and YouTube-Wild. One can observe the
considerable difference between the performance of these training sets. Audioset-40 is manually
labeled and is also expected to have reasonably good label density as recordings are of 10 seconds
duration. On the other hand, YouTube-wild is not manually labeled or even verified and is
expected to have a large number of corrupted labels. Moreover, YouTube-wild consists of very
long duration recordings (up to 4 minutes) and hence even those where the weak labels are correct
the label density can be very low. Together these two forms of noises severely affects the learning
process. Learning from web data without any manual labeling remains a major challenge. Future
works on large-scale AED needs to develop algorithms which can address these challenges.

Table 4.14 shows 10 best and worst performing events for YouTube-Wild. Corresponding
Audioset-40 numbers for these events are shown in the Table. Even for the 10 events where
YouTube-Wild does well, compared to Audioset-40 an average drop of 55% in AP is noted. At
the same time, there are a few events such as Chicken-Rooster among the best 10 and Bus among
worst 10, where both sets can be argued to have similar performances.

Table 4.15 shows 10 events for which the highest percentage drop in performance is observed.
Corresponding AUC values are also shown in parenthesis. As expected the average drop over
these cases is very high, higher than 80%. Interestingly, 3 of the classes (Train, Rail Transport,
and Railroad Car-Wagon) are broadly expected to fetch similar results from YouTube. For all of
these three classes, the performance drop is substantial.

81

4.7 Summary and Conclusions

In this chapter, we described deep learning methods for audio event detection using weakly
labeled data. More specifically, our methods primarily relied on convolutional neural networks
and then incorporated the constraints of the weak label in the learning process. The fundamental
idea is that we take a bottom to top approach, where the prediction at recording level is done
through predictions at segments level. In WLAT, the network is designed to produce segment level
outputs directly, and then a mapping function maps these segment level outputs to recording level
outputs. The overall framework is entirely generic and can be applied through different network
architectures. We discussed several mapping functions, including some which bring attention like
behavior into the framework. Other forms of mapping functions can also be developed.

Our method embodies several desirable characteristics from the perspective of weakly labeled
audio event detection. It can handle recordings of variable length, and the network design con-
trols segment sizes over which segment level outputs are produced. This removes any additional
pre-processing step. Our method is able to achieve state of the art performances. Compared in
particular to the SLAT method, our WLAT method performance better and is also computation-
ally less expensive resulting in improved training and inference times.

We also dived deeper into the nature of weak label learning. We specifically pointed out two
factors which we are expected to run into when we try to learn from weakly labeled data. The
problem of label density noise is inherent to the nature of weak labels. Corrupted labels are also
expected to occur often. Given that other deep learning methods for weakly labeled dataset has
been proposed [Chou et al., 2018, McFee et al., 2018, Tseng et al., 2017, Xu et al., 2017], it would
be interesting to see which of these more robust to these factors label noises. It is essential that
future works address these issues while learning from weakly labeled data.

82

Chapter 5

A Unified Framework: Combining
Weakly and Strongly Labeled Data

You make different colors by combining those colors that already exist.

-Herbie Hancock

In the previous chapter, we developed deep learning methods for audio event detection using
weakly labeled dataset. Towards the end of the chapter, we delved deeper into weak label learning
for sounds and discussed factors which are expected to play important roles in weakly supervised
learning of sounds. Specifically, label density and noisy/corrupted labels were the two main factors
we investigated. In this chapter, we introduce another novel framework for training sound event
detectors. We describe a unified learning framework, which uses both weakly and strongly labeled
data. We call this framework (WEA)kly and Strongly Labeled learning (WEASL, pronounce as
weasel).

5.1 Introduction

Our unified framework aims to simultaneously exploit weakly and strongly labeled data. Training
with strongly labeled data can otherwise be referred to as fully supervised learning because
positive and negative examples of audio events are available (extracted through available time
stamps). In the weakly labeled data, labels are available only at recording level and only weakly
supervised learning is possible. Our WEASL framework [Kumar and Raj, 2017a] offers a unique
form of learning which can leverage labeled data in both forms.

The motivation behind WEASL can be understood through the following three points.

� The problem with strongly labeled data is that a large amount of strongly labeled data is
hard to collect. Nonetheless, in a lot of cases strongly labeled data are available or strong
labels can be created, though in a small amount. Weakly labeled data, on the other hand,
can be obtained on a much larger scale. Given labeled data in the two forms, it is desirable
to have a learning framework which can use them simultaneously. The labeled data in both
forms can together help in learning robust models for audio events.

� Weakly supervised learning offers us an opportunity to use the massive amount of mul-

83

timedia data on the web, example from YouTube. Weak labels for a recording can be
automatically obtained; for example, through the metadata associated with the recording.
The retrieval engines of these websites often rely on the metadata and can directly give us
a list of videos for any query term, further easing the weak labeling process. Irrespective
of how the weak labels are obtained, such weak labels are always expected to be noisy.
Consider, for example, the sound event barking. A query search of barking on YouTube
also returns recordings such as Hillary Clinton literally barks at Republicans among the
top results which obviously has nothing to do with the acoustic event barking. Thus, get-
ting rid of label noise entirely under these circumstances is extremely difficult and close to
impossible.

Another form of noise we discussed before is label density noise. A weakly labeled set
with low label density or high label density noise can again make the learning process
very difficult. We believe that WEASL can address these problems to a certain extent. A
small amount of data can be strongly labeled. These “pure” examples can be appropriately
exploited to improve the overall training of event detectors. It can be used along with
the large pool of weakly labeled recording through a unified learning framework which
can harness labeled data in both forms. The effects of label noises while learning weakly
labeled data can be mitigated by the strongly labeled data or in other words the presence
of well-labeled data can make weakly supervised learning tolerant to label noises.

� A large portion of web audio or multimedia data are consumer generated. The recording
conditions, styles, and sophistication vary significantly among such recordings, resulting in
large within-category variations among different instances of an event, making the funda-
mental learning problem challenging. Moreover, the audio signal itself might be very noisy.
Another overlapping event or noise might degrade the event of interest. Overall, learning
from web data presents yet another challenge in the form of what we can refer to as “signal
noise”. Once again, a small amount of “pure” examples from strongly labeled data can be
appropriately exploited to counter these signal noise issues.

The above points lay down the motivations behind our unified learning framework. To the
best of our knowledge, this is the first such framework for sounds which leverages labeled data
in both forms. Some works in the field of computer vision have considered labeled data in both
forms for object detection in images. [Hoffman et al., 2015] used strong labels as an auxiliary
data source and the optimization function jointly optimizes both weak label loss and the strong
label loss. The weak label loss follows the MISVM formulation we had discussed before. [Li et al.,
2018] proposed another object detection method using both strongly and weakly labeled images.
This mixed supervised detection, as they called it, tries to learn domain invariant features from
the strongly labeled data and then attempts to transfer the knowledge to weak categories. An
important point to note for these works is that the strongly and weakly labeled data are for
different object categories. [Xu et al., 2015c] tries to use images from the web to aid strongly
labeled data in part detection in images.

Similar to the above works, our goal is to learn from labeled data in both forms. Our WEASL
framework retains the basics of MIL to work with the weakly labeled data. Audio recordings are
converted into bags by segmenting into small segments, and positive (+1) or negative (-1) labels
are assigned to the bags according to the weak labels available for the recordings. So the weakly
labeled in our unified framework is once again a collection of labeled bags.

We propose two approaches for the unified learning framework. The first one called naive-
WEASL follows a naive approach to the blended learning. It adapts the strongly labeled data in

84

the MIL framework to learn simultaneously from labeled data of both forms. The second and the
more important approach is a generic formulation for WEASL, under which potentially a variety
of methods can be devised. The central idea behind the second approach is that WEASL can
be formulated as semi-supervised (SSL) learning with constraints. Under this formulation, one
can adopt a variety of SSL methods for WEASL. We will refer to this generic approach as just
WEASL.

5.2 Naive WEASL

The fundamental idea behind weakly labeled audio event detection was that it can be formu-
lated as a multiple instance learning problem. The weakly labeled recordings are converted into
labeled bags; by segmenting the recordings and using appropriate feature representations for the
segments. The bags are labeled as positive for an event if the weak labels mark the event to be
present in the recording and otherwise negative. The segments of the recordings are instances,
the labels for which are not known.

In WEASL, along with the weak data in the form of labeled bags, we also have strongly
labeled data. The strongly labeled recordings are essentially a collection of labeled exemplars
for each event. The naive approach to learn from labeled data in both of these forms is to treat
strongly labeled data as a special case of weakly labeled data. In this formulation, each labeled
instance coming from the strongly labeled set is considered as a bag with one instance only. The
bag label is the same as instance label. So the strongly labeled data also becomes a collection of
labeled bags. Once this is done, any MIL approach can be applied.

MIL methods either incorporate the weak labels through additional constraints in the learning
algorithm or the loss function is modified to handle the weak labels appropriately. The fact that
for a positive bag all we know is that it contains at least one positive instance needs to be
factored in somehow. The strongly labeled data in naive-WEASL are considered as labeled bags
with a single instance. Hence, any MIL method will treat the strongly labeled data as weakly
labeled data. Since each such bag contains only one instance, the constraints imposed by MIL
methods will end up satisfying the supervised label constraints. For example, if we use miSVM
as the MIL method, then the bags formed from strongly labeled will satisfy label constraints as in
conventional supervised SVM. Hence, data in both strong and weak forms gets used appropriately.

5.3 Generalized WEASL

naive-WEASL is a simple way of unifying strongly and weakly labeled data. We desire a more
systematic framework for combining strongly and weakly labeled data. In this section, we present
a more general and methodical framework for WEASL. Figure 5.1 outlines our general method
for WEASL.

The main idea here is that it formulates the problem as a constraint form of semi-supervised
learning. In MIL, negative bags are known to contain only negative instances, meaning, labels
for all instances in negative bags are known. Thus, instances in negative bags can be considered
as similar to labeled instances from strongly labeled data. For positive bags, on the other hand,
this is not true.

We undertake instances in positive bags as unlabeled but with certain “label constraints”.
The constraint on this unlabeled data is that they are grouped into bags, and within each bag of

85

Figure 5.1: Unified Framework for Weakly and Strongly Labeled learning (WEASL)

instances at least one instance is positive. Looking at the whole thing together, we have labeled
instances on one side and unlabeled instances with certain label constraints on the other side.

Hence, this general form of WEASL can be formulated as semi-supervised learning with
constraints on the unlabeled data. A variety of methods for semi-supervised learning have been
proposed over the years [Belkin et al., 2006, Bennett et al., 1999, Jia and Zhang, 2008, Zhou
and Xu, 2007, Zhu and Goldberg, 2009, Zhu et al., 2003]. We start by adopting one of the most
popular methods for semi-supervised learning, Manifold Regularization on Graphs [Belkin et al.,
2006] for WEASL. We name this variant of WEASL as graph-WEASL.

5.4 graph-WEASL

All instances in the negative bags are of negative labels and hence, from here on in our math-
ematical formulation we will consider them to be part of the strongly labeled dataset. Thus,
we have labeled instances from the strongly labeled data and the negatively labeled bags. The
unlabeled set with constraints are instances from the positive bags.

Let us represent the supervised dataset as Ds = {(x1, y1), ...(xn, yn)}. yi ∈ {−1, 1} is label for
instance xi and n is the total number of instances inDs. The weakly supervised dataDw, is in form
of positive bags. Let Dw = {B1, ..BT } be the set of T bags where Bt = {(xt1, yt1), ..., (xtmt , ytmt)}
is a positive bag of instances. Labels y for instances in the bags are unknown but at least one of
them is +1. m =

∑T
t=1mt is the total number of instances in all positive bags.

Let us represent the whole data D as D = {(x1, y1), ...(xn, yn), (xn+1, yn+1),(xn+m, yn+m)}.
Without loss of generality, we have assumed that instances are ordered such that first n are from
Ds and n+ 1 to n+m are from Dw. Instances n+ 1 to n+m1 are from bag B1 and so on. We
will denote the start and end indices of instances from bag Bt in D as pt and qt. The instance
space is denoted by X . The total number of instances in D is N = n+m.

86

Labels for the first n instances in D are known. The labels for the rest of the instances are
unknown but constraint by the following relationship

max(ypt , ypt+1 , ..., yqt) = 1 ∀ t = 1 to T (5.1)

The goal is to learn the function mapping f : X → R, which maps the instance space to a
decision score. f is assumed to be smooth and let us denote the Reproducing Kernel Hilbert
Space (RKHS) of f as H.

Since the labels for instances xn+1 to xn+m are essentially unknown and yet constrained by Eq
5.1, we can formulate this learning process as a constrained form of semi-supervised learning. A
particularly well-known method for semi-supervised learning is manifold regularization on graphs
[Belkin et al., 2006]. This graph based semi-supervised learning method is inductive, and that is
one of the reasons for choosing it.

5.4.1 Manifold Regularization approach for WEASL

In graph based semi-supervised learning, all instances are assumed to be connected by a graph
G = (V,E), where the vertices V are instances in the data. Here, we assume a kNN graph [Zhu
and Goldberg, 2009] where a vertex xi is connected to another vertex xj by a non-zero weight
wij if xi is among the k-nearest neighbour of xj and vice versa. The edge weight wij is then

defined by Gaussian Kernel, wij = exp(− ||xi−xj ||2
2σ2). σ is the bandwidth parameter for weights.

Clearly, when xi and xj are not connected wij = 0. The overall graph is parametrized through a
symmetric weight matrix W whose elements are wij . Finally, the unnormalized graph laplacian
L is defined by L = D −W , where D is diagonal matrix and Dii =

∑
j wij .

Manifold regularization on graphs for SSL solves the following optimization problem

min
f

1

n

n∑
i=1

(yi − f (xi))
2 + λ1||f ||2H + λ2||f ||2I (5.2)

The first term is simply the squared loss over the labeled instances. The first regularization
term ||f ||2H is the standard RKHS norm which is used to impose smoothness conditions on f .
The second penalty term ||f ||2I is a regularization term for intrinsic structure of data distribution.
This terms ensures that the solution is smooth with respect to data distribution as well. Together
the two regularization terms control the complexity of the solution over both RKHS and intrinsic
geometry of data distribution.

For WEASL, we need to factor in the weak label information of positive bags in the above
optimization problem. To do this, we solve following optimization problem

min
f

1

n

n∑
i=1

(yi − f (xi))
2 + λ1||f ||2H + λ2||f ||2I

+
λ3
T

T∑
t=1

(1− max
j=pt,...,qt

f(xj))
2 (5.3)

In the above formulation, the last term is the squared loss for each positive (+1) bag. To
compute the loss for each bag the output of each bag is determined by the maximal output
instance.

87

Unlike the case of semi-supervised learning, the above WEASL formulation is a non-convex
optimization problem. To solve the optimization problem, we rewrite the optimization problem
in Eq 5.3 using slack variables.

min
f,ξ

n∑
i=1

(yi − f (xi))
2 + λ1||f ||2H + λ2||f ||2I + λ3

T∑
t=1

ξ2t

s.t 1− max
j=pt,...,qt

f(xj) ≤ ξt, t = 1, ..., T (5.4)

ξt ≥ 0, t = 1, ..., T

ξt are the slack variables for loss on positive bags. Also, note that we have factored in the
normalization terms (n and T) in the regularization parameters. To solve the above problem we
need a finite dimensional form for f .

Using Representer Theorem [Smola and Schölkopf, 1998], the solution to the above problem

can be expressed as f(x) =
N∑
i=1

αik(x,xi), where k(·, ·) is the reproducing kernel of H. Let us

denote the N ×N kernel gram matrix over the training data D with K.

Now, let Y be a N dimensional label vector where Y = [y1, y2, ...yn, 0, 0....0]. Yi is label for
the first n instances, which are labeled, and 0 for the rest. Also, let J be N ×N diagonal matrix
where Jii = 1 for i = 1 to n and Jii = 0 for i = n+ 1 to (n+m).

Using the expression for f , the squared loss term for labeled instances can be written as∑n
i=1(yi − f (xi))

2 = (Y − JKα)T (Y − JKα). The intrinsic norm ||f ||I is estimated using the
graph laplacian matrix L by ||f ||2I = 1

N2 f
TLf [Belkin et al., 2006]. Hence, ||f ||2I = 1

N2α
TKLKα.

So our final optimization problem becomes

min
α,ξ

(Y − JKα)T (Y − JKα) + λ1α
TKα

+ λ2
1

N2
αTKLKα+ λ3

T∑
t=1

ξ2t (5.5)

s.t 1− max
j=pt,...,qt

K ′jα ≤ ξt t = 1, ..., T

ξt ≥ 0, t = 1, ..., T

In 5.5, Kj is the jth column of kernel matrix K.

5.4.2 Optimization Solution

The objective function in the optimization problem in Eq 5.5 is a convex differentiable function.
The first set of constraints (1 − max

j=pt,...,qt
K ′jα ≤ ξt) are non-convex but differences of two convex

functions. Convex Concave Procedure (CCCP) [Smola et al., 2005], is a well known method of
sequential convex programming to handle problems like this. It is an iterative method in which
the non-convex function is converted into a convex function using Taylor series approximation at
the current solution.

For an objective or constraint in the form of g(x)− h(x), where g(x) and h(x) are convex, a
convex approximation at x(k) is obtained as g(x)− h(x(k))− Oh(x(k))(x− x(k)), where Oh(x(k))
is gradient of h(x) at x(k).

88

max() is a non-smooth function and hence we need the subgradient of max() for the Taylor
series expansion. The subgradient of max

j=pt...qt
K ′jα can be defined as [Cheung and Kwok, 2006]

∂(max
j=pt,...,qt

K ′jα) =

qt∑
j=pt

δtjKj (5.6)

The δtj ’s are defined as

δtj =

1
rt
, if K ′jα = max

u=pt,...,qt
K ′uα

0, otherwise
(5.7)

rt is the number of instances which maximizes the output K ′jα in tth bag. Hence, all instances in
the bag for which maximum is achieved are active in the subgradients. Now, we can rewrite the
non-convex constraints in kth iteration of CCCP using the above subgradient. The non-convex
constraint 1− max

j=pt,...,qt
K ′jα in kth iteration becomes

1− max
j=pt...qt

K ′jα ≈ 1− (max
j=pt...qt

K ′jα
(k) +

qt∑
j=pt

δ
(k)
tj K

′
j(α− α(k))) (5.8)

Hence, the final optimization problem to solve in kth iteration of CCCP is

min
α,ξ

(Y − JKα)T (Y − JKα) + λ1α
TKα

+ λ2
1

N2
αTKLKα+ λ3

T∑
t=1

ξ2t (5.9)

s.t

1− (max
j=pt...qt

K ′jα
(k) +

qt∑
j=pt

δ
(k)
tj K

′
j(α− α(k))) ≤ ξt

t = 1, ..., T

ξt ≥ 0, t = 1, ..., T

The objective function in optimization problem of Eq 5.9 is convex and the constraints are linear.
The overall problem is a convex QP problem. In CCCP, the above optimization problem is
iteratively solved until convergence.

Once α has been obtained the output corresponding to any test point xtest can be obtained
as f(xtest) =

∑N
i=1 αik(xtest,xi). It is worth noting that graph-WEASL can also predict output

corresponding to each instance in a bag. Hence, our WEASL approach can also be used for
temporal localization of acoustic events in a recording. The bag-level prediction is done by using
the max() function over instance outputs.

5.5 Experiments and Results

5.5.1 Experimental Setup

We evaluate the proposed WEASL frameworks on both audio event and acoustic scene recogni-
tion tasks. In our experiments, we add a small amount of strongly labeled data to the pool of

89

weakly labeled data to learn event or scene detectors using WEASL and compare it with weakly
supervised learning. For weakly supervised learning we use miSVM approach. For naive-WEASL,
we again use miSVM approach to integrate the strongly and weakly labeled data.

The details specific to the audio event and scenes are given in the respective sections. We
describe the common experimental set up here. All audio recordings in our experiments are
sampled at 44.1KHz sampling frequency. 20 dimensional MFCC features along with delta and
acceleration coefficients are used to parametrize audio recordings. The ~F features over the MFCCs
as described in Section 3.6.1 are used to represent segments or instances in the bags. The GMM
component size K is 64 or 128.

Exponential Chi-square (χ2) kernels in form of exp(−γd(x, y)) have been known to work
remarkably well with histogram features, including for detection of acoustic concepts [Rawat
et al., 2013][Kumar and Raj, 2016c]. d(x, y) is χ2 distance. Hence, we use exponential χ2 kernels
for miSVM and naive-WEASL. The parameter γ is set as the inverse of mean χ2 distance between
training points. The slack parameter C in SVM training is selected through cross-validation on
the training data.

For graph-WEASL, the kNN graph is constructed with k as 20 or 40. We evaluate and show
results for both cases. The bandwidth σ for graph weights is set to 1.0 for all experiments. The
kernel K is again exponential χ2 kernel as used in miSVM and naive-WEASL. The parameter
λ3 in graph-WEASL is simply set as λ3 = n/T , that is the ratio of the number of supervised
instances to the number of positive bags. The other two regularization parameters λ1 and λ2 are
selected through cross-validation over a grid of 10−3 to 103. We use [Grant and Boyd] for solving
the QP problem in Eq 5.9.

5.5.2 Audio Event Recognition

We consider a set of 10 acoustic events namely, Chainsaw (C), Clock Ticking (CT), Crackling
Fire (CF), Crying Baby (CR), Dog Barking (DB), Helicopter (H), Rain (RA), Rooster (RO),
Seawaves (SE), Sneezing (SN). The events are part of ESC-10 [Piczak, 2015b] dataset which
provides us strongly labeled data for these events. We obtain the weakly labeled training data
from YouTube.

For each event, we use the event name as the search query on YouTube. To get more sound-
oriented results the keyword “sound” is attached to each event name (e.g. Chainsaw sound). We
consider the audio from the top 60 returned video results, from which we filter out very long
recordings. Finally, we are left with 40 weakly labeled recording for all acoustic events except
Crackling Fire (35) and Rain(10). Recordings for Rain are relatively longer, and hence the total
duration of audio for it is in a similar range compared to others. The total duration of all 365
recordings is around 5.1 hours. Audio recordings are segmented to form bags and instances, and
we use the average duration of each event in the strongly labeled data as segment size.

We need a large test dataset for a comprehensive evaluation of all methods. For all audio
events, we obtain test data from Freesound 1. The number of test recordings for each event
are as follows: Chainsaw - 78, Clock Ticking - 69, Crackling Fire - 66, Crying Baby - 88, Dog
Barking - 100, Helicopter - 39, Rain - 76, Rooster - 83, Sea Waves - 48, Sneezing - 75. A total
of 722 recordings spanning over 13 hours is used for evaluation. Note that results given in the
next paragraphs are bag-level or recording-level prediction results. The recording level prediction
scores are obtained by taking a max() over segment level scores.

1www.freesound.org

90

Table 5.1: Results (AP) using miSVM and naive-WEASL

Events K = 64 K = 128
miSVM naive-WEASL miSVM naive-WEASL

Chainsaw 0.571 0.671 0.436 0.649

Clock Ticking 0.563 0.658 0.542 0.689

Crackling Fire 0.382 0.458 0.421 0.522

Crying Baby 0.558 0.630 0.613 0.691

Dog Barking 0.237 0.348 0.442 0.520

Helicopter 0.363 0.384 0.393 0.431

Rain 0.263 0.414 0.252 0.374

Rooster 0.392 0.444 0.466 0.533

Seawaves 0.164 0.162 0.176 0.171

Sneezing 0.320 0.402 0.327 0.424

MAP 0.381 0.457 0.407 0.500

The ESC-10 dataset contains 40 positive examples for each event, resulting in a total of 400
supervised data (positive or negative) for any given event. The dataset comes pre-divided into
5 folds. We include recordings from 4 out of 5 folds for training. This amounts to adding about
25 minutes of strongly labeled data to the pool of weakly labeled data. The ratio of the total
duration of weakly to strongly labeled data is around 12.5. Experiments are run all 5 ways
(leaving one fold in each case), and the average across all 5 runs are reported. We use Average
Precision (AP) as the performance metric. The mean average precision (MAP) over all events
are also shown.

Table 5.1 shows AP values for different audio events using miSVM and naive-WEASL. Results
for acoustic features using both K = 64 and K = 128 Gaussians in the GMMs are shown. One can
observe that adding a small amount of strongly labeled data to the pool of weakly labeled data is
extremely helpful. WEASL even in the naive formulation gives a considerable improvement over
only weakly supervised miSVM. Improvements in MAP of around 20% for K = 64 and 22.8%
for K = 128 is observed. As far as individual events are concerned, for several events such as
Chainsaw, Crackling Fire, Rain, Sneezing relative improvements in the range of 25− 50% in AP
can be observed.

Table 5.2 shows AP values for graph-WEASL approach. We observe that graph-WEASL
improves over naive-WEASL another 8.6 − 9.6%. This amounts to about 31.5% and 33.5%
improvement over miSVM for K = 64 and 128 and respectively. For graph-WEASL, the perfor-
mance remains more or less consistent for the two values of k in the kNN graph. Overall, our
results show that a small amount of strongly labeled can play a significant role in reducing the
effect of signal-noise and label-noise in weakly labeled data obtained from the web.

5.5.3 Recognition of Strongly Labeled Events Set

One crucial advantage of weakly supervised AED using methods such as miSVM is that we can
obtain temporal locations of events in audio recordings. We showed this in Chapter 3. The
WEASL framework we presented here can do the same as well.

The procedure remains the same as in MIL. We can predict on each instance of the bag and
then the temporal localization can be done through predictions on the segments. Our goal is

91

Table 5.2: Results (AP) using graph-WEASL

Events C = 64 C = 128
kNN = 20 kNN = 40 kNN = 20 kNN = 40

Chainsaw 0.534 0.531 0.578 0.574

Clock Ticking 0.669 0.672 0.713 0.713

Crackling Fire 0.571 0.584 0.579 0.574

Crying Baby 0.749 0.741 0.767 0.772

Dog Barking 0.305 0.305 0.439 0.439

Helicopter 0.448 0.458 0.565 0.526

Rain 0.421 0.403 0.382 0.414

Rooster 0.612 0.610 0.695 0.678

Seawaves 0.178 0.174 0.194 0.198

Sneezing 0.523 0.523 0.519 0.519

MAP 0.501 0.500 0.543 0.541

Table 5.3: Temporal Localization Results

Events K = 64 K = 128
miSVM naive-WEASL graph-WEASL miSVM naive-WEASL graph-WEASL

Chainsaw 0.455 0.646 0.497 0.372 0.640 0.668

Clock Ticking 0.702 0.766 0.846 0.704 0.856 0.800

Cracking Fire 0.715 0.841 0.914 0.691 0.878 0.886

Crying Baby 0.861 0.923 0.980 0.846 0.931 0.983

Dog Barking 0.510 0.726 0.772 0.621 0.810 0.834

Helicopter 0.691 0.722 0.741 0.733 0.776 0.829

Rain 0.130 0.498 0.622 0.086 0.516 0.586

Rooster 0.827 0.883 0.967 0.838 0.926 0.957

Seawaves 0.514 0.612 0.693 0.563 0.662 0.714

Sneezing 0.683 0.828 0.916 0.693 0.888 0.960

MAP 0.609 0.745 0.795 0.615 0.788 0.822

to evaluate temporal localization performances for WEASL as well. However, the test set used
in the previous section has been obtained from Freesound and are weakly labeled. Temporal
localization evaluation implies instance level evaluation of all methods. Hence, we design an
experiment which is similar to the evaluation of predictions at the segment level.

We evaluate our framework on strongly labeled data. Each recording is an exemplar of
the event. We relate this test to temporal localization experiments. The procedure for temporal
localization would have been to recognize the event in each segment of the recording. For strongly
labeled data each recording is just one instance, rather than a bag.

We use the left out fold from the ESC-10 dataset for evaluating instance-level performance.
Results accumulated over all 5 runs are reported.

Table 5.3 shows AP for instance-level prediction of the sound events. Once again we notice
that WEASL based approaches give 22.3− 33.6% improvements over learning from only weakly
labeled data. Graph-based WEASL is once again superior to other methods. Overall this shows
that our proposed method is suitable for instance level prediction as well.

92

5.5.4 Acoustic Scene Recognition

The procedure for acoustic scenes remains same as acoustic events. We work with a total of 15
acoustic scenes from DCASE [Mesaros et al., 2016] dataset, which is also the source of strongly
labeled data in our experiments. Weakly labeled training data is again obtained from YouTube
through a procedure similar to the audio events. In this case, we create weakly labeled data of
40 recordings per scene, totaling 600 recordings which span over 27 hours. Once again we obtain
test data from Freesound. A total of 928 test recordings (∼ 38 hours) are present in the test set.
The test data contains an average of 61 recording per scene with a minimum of 53 for Forest
Path and a maximum of 71 for Residential Area. Segment size is the average duration of scenes
in strongly labeled data, which is 30 seconds for all of the scenes. The strongly labeled data from
DCASE comes pre-divided into 4 sets, and our experimental approach is the same as before. We
use 3 out of 4 folds in WEASL and perform experiments all four ways. As before, average results
across all 4 runs are reported.

It is worth noting that acoustic scenes are acoustically more complex. Intra-class variation is
far greater than the audio events. Both training and the test data contains a significant amount
of within-class variations, which makes recognition of acoustic scenes from weakly labeled data
a much harder problem. This is evident in the low average precision for most classes. Moreover,
the weakly labeled training data from YouTube is also noisier than the audio events.

Table 5.4 shows AP values for different methods. For acoustic scenes, we note that the
performance of miSVM and naive-WEASL is almost similar as far as the MAP is concerned.
Graph-based WEASL, on the other hand, gives a 20% relative improvement over these methods.
graph-WEASL improves AP for almost all scenes. For several scenes such as Grocery Store,
Home, Library, Metro Station, Train, Tram AP improves by 50% or more in relative terms.
This should be especially noted for Home, which turns out to be the hardest scene to detect.
graph-WEASL, in this case, more than doubles the average precision.

5.6 Discussions and Conclusions

In this chapter, we described a novel learning framework called Weakly and Strongly Labeled
(WEASL) framework which leverages labeled data in both weak and strong forms. Within the
general framework presented, a variety of other WEASL methods can be developed.

One approach can be a modification of the current graph-WEASL method. It can be modified
to utilize loss functions other than squared loss. Hinge loss is a common loss function used in
a variety of machine learning algorithms. We can replace the square loss in Eq 5.3 with Hinge
Loss. This would amount to solving the following optimization problem

min
f

1

n

n∑
i=1

H(yi, f (xi)) + λ1||f ||2H + λ2||f ||2I

+
λ3
T

T∑
t=1

H(1, max
j=pt,...,qt

f(xj)) (5.10)

H(y, f(x)) is the Hinge loss with y as true label and f(x) as decision output. Hinge loss is
a convex function, and the above optimization problem can be solved by following a procedure
similar to current graph-WEASL.

93

Table 5.4: Acoustic Scene Results (AP). graph-WEASL (gWEASL), naive-SWSL (nWEASL)

Events C = 64 C = 128
miSVM nWEASL gWEASL miSVM nWEASL gWEASL

Beach 0.129 0.132 0.153 0.140 0.150 0.122

Bus 0.087 0.099 0.110 0.094 0.104 0.106

Cafe 0.264 0.220 0.256 0.272 0.246 0.301

Car 0.066 0.083 0.078 0.069 0.085 0.079

City Center 0.137 0.122 0.121 0.132 0.129 0.121

Forest 0.074 0.076 0.081 0.090 0.095 0.092

Grocery Store 0.053 0.061 0.081 0.059 0.066 0.098

Home 0.048 0.060 0.116 0.049 0.067 0.098

Library 0.073 0.106 0.113 0.070 0.086 0.088

Metro Station 0.090 0.096 0.133 0.086 0.096 0.119

Office 0.105 0.093 0.080 0.099 0.091 0.069

Park 0.115 0.119 0.133 0.129 0.153 0.142

Residential Area 0.092 0.112 0.099 0.085 0.113 0.111

Train 0.070 0.066 0.105 0.074 0.068 0.092

Tram 0.106 0.132 0.144 0.111 0.144 0.157

MAP 0.101 0.105 0.120 0.104 0.113 0.120

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

f(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2: Hat Loss in semi-supervised SVM

One can also use semi-supervised SVMs for WEASL. The semi-supervised SVM solves the
following optimization problem

min
f

1

n

n∑
i=1

H(yi, f (xi)) + λ1||f ||2H + λ2

N∑
i=n+1

Ĥ(yi, f (xi)) (5.11)

H is the usual Hinge loss over the labeled data and Ĥ is a non-convex hat shaped loss function
(Figure 5.2) over predicted f(x) for the unlabeled data point. Once again the positive bags can be
treated as unlabeled data, with certain “label constraints”. Hence, similar to our graph-WEASL
framework we can modify the above optimization function for WEASL. This is shown in Eq 5.12.
Solving Eq 5.12 is more complicated than the previous cases due to the non-convex Ĥ, however,

94

it can still be done.

min
f

1

n

n∑
i=1

H(yi, f (xi)) + λ1||f ||2H + λ2

N∑
i=n+1

Ĥ(yi, f (xi)) +
λ3
T

T∑
t=1

H(1, max
j=pt,...,qt

f(xj)) (5.12)

Optimization problems Eq 5.10 and Eq 5.12 are two other methods within the general frame-
work of WEASL. Deep learning methods for WEASL can also be explored, although, it might not
follow the general outline of WEASL we presented here. However, deep learning methods might
do well with larger datasets. The graph-based semi-supervised method we presented here might
lead to computational issues for very large datasets. One simple way to explore deep learning for
WEASL can be through transfer learning. Here, strongly and weakly labeled data can be consid-
ered as two different domains and then transfer learning based methods can be used to transfer
knowledge from one to the other. We present deep learning methods to transfer knowledge from
one domain to another for sounds in the next chapter, although not in the context of weakly and
strongly supervised learning.

95

Chapter 6

Transfer Learning for Sounds

If you have knowledge, let others light their candles in it.

-Margaret Fuller

In the previous chapters, we introduced the idea of weakly labeled learning for sounds. Weak
label learning led to large-scale audio event detection and in this chapter, we show how large-scale
weakly supervised learning of sounds can be further utilized in solving other tasks.

6.1 Introduction

Weak labeling addresses data availability constraints to a large extent. However, creating large
datasets along the lines of Audioset is still not easy. Moreover, in some cases, it might just be
difficult to collect large amounts of labeled data in any form. For examples, there are sound
events which are inherently rare. Deep learning methods such as those based on CNN are not
directly useful in such cases. However, as pointed out by Ellis et al. in Future Perspectives [Ellis
et al., 2018], one can attempt to address this problem by transferring knowledge from a model
trained on a large dataset. Motivation also comes from computer vision where deep CNN models
have been successfully used to transfer knowledge from one domain to another as well as from one
task to another [Oquab et al., 2014, Yosinski et al., 2014]. This approach, more generally referred
to as transfer learning [Pan and Yang, 2010, Weiss et al., 2016] remains more or less unexplored
in the context of sound events and scenes.

Transfer learning is an important and extremely useful learning framework in machine learn-
ing. Humans often apply knowledge from one domain to another in their daily life. This comes
naturally to us as we have highly evolved association capabilities. The idea of using knowledge
from one domain or task to another in machine learning is grounded in our natural abilities.
Hence, we expect that if two domains or tasks are related then a model trained on one should
be helpful in solving the other task. Its significance increases even further when labeled data
for one of the task is scarce. In these cases, training a new model on a small amount of labeled
data might not lead to good generalization. However, the knowledge from the first model which
trained on a larger dataset could be very useful. The general idea of transfer learning is shown
in Figure 6.1.

The model trained on the first task, shown in Figure 6.1 as the source model, is used in

96

Figure 6.1: The basic idea behind transfer learning

learning the target task. We follow [Pan and Yang, 2010] in giving a formal definition of transfer
learning. Let DS and TS be source domain and task. Let DT and TT be the target domain and
task. Let fS() and fT () be source and target domain predictive functions.

Given the source domain and task DS and TS , the goal of transfer learning is to improve the
learning of target function fT () in DT using the knowledge in DS and TS . In this setting, either
DS 6= DT or TS 6= TT . That is, either the source and target domains are different, or the source
and target tasks are different. They can both be different as well.

The domain D = {X , P (X)} is defined by an instance space, X and a marginal distribution
P (X), X = {x1, ..., xn} ∈ X over a set of data points. The source domain data is defined as
DS = {(xS1 , yS1),, (xSn , ySn)}, a collection of data points from XS and their labels from YS .
Similarly, target domain data is DT = {(xT1 , yT1),, (xTn , yTn)}. The task consists of learning
the predictive function f(), given the data points xi ∈ X and their labels yi ∈ Y . If the domains
are different then XS 6= XT or PS(X) 6= PT (X). If the tasks are different then either YS 6= YT or
the conditional probability distributions are different, P (YS |XS) 6= P (YT |XT). The overall goal
of transfer learning is to use the knowledge from the source domain and task, to improve the
learning of the target task. The assumption behind most of the successful transfer learning works
is that the source and target domain are related and knowledge transfer is meaningful. However,
this might not be necessarily true and one needs to be careful to avoid negative transfer.

6.1.1 Related Works

Transfer learning has been widely used in a large number of computer vision and natural lan-
guage processing (NLP) tasks. It has been used for text classification, sentiment analysis and
classification, named entity recognition, to mention a few [Dai et al., 2007, Guo et al., 2009, Long
et al., 2014, Melville et al., 2009, Pan et al., 2010]. In computer vision, transfer learning has
been applied to object recognition and video concept or multimedia event detection [Duan et al.,
2012a, Lampert et al., 2009, Lim et al., 2011, Shao et al., 2015, Tommasi et al., 2010, Yang et al.,
2007].

Deep learning models are capable of exploiting large datasets, and this makes them well
suited for knowledge transfer through them. Hence, a large number of recent transfer learning
works have used deep neural networks to transfer learning [Long et al., 2015, Oquab et al., 2014,

97

Sharif Razavian et al., 2014, Zeiler and Fergus, 2014]. Transferability of features have been done
and also exhaustive empirical analysis have been done [Kornblith et al., 2018, Yosinski et al., 2014],
which have lead to better insights into transfer learning for computer vision tasks. Convolutional
neural networks, being the dominant neural network framework in computer vision, have been
used in most of the works.

Transfer learning can be done through deep networks in a variety of ways. However, two
popular approaches have been to (a) fine-tune the network for the target task [Kornblith et al.,
2018, Tajbakhsh et al., 2016], and (b) extract features or learn representations using the source
network for the data in the target domain [Oquab et al., 2014, Sharif Razavian et al., 2014]. In
the first case, the source network itself is adapted to solve the target task. In the second case,
the source network serves as a feature extraction system; the features are then further used with
a different learning algorithm, most commonly a simpler one which does not require a massive
amount of data to learn. It also possible that the networks trained on the source task are fine-
tuned first before it is used to extract features for the target task. In this case, the idea is to
learn discriminative representations by using the labeled data from the target task. Multi-task
learning [Caruana, 1997] is another popular form of transfer learning where two different domains
simultaneously teach each other.

Transfer learning in computer vision has been successful because of the availability of large
datasets such as Imagenet, which provides a large collection of labeled examples for a large number
of visual objects. This allows one to train deep models which can learn enough information from
the source data to be useful in solving other tasks. For sounds, the primary problem has been
lack of such large-scale datasets; by large scale, we imply both, the vocabulary of sound events as
well as the overall dataset size. The vocabulary of sound events is critical here. To successfully
transfer knowledge across different domains and tasks, the larger the class set, the better it is.
Similar to computer vision, a deep network trained on a large dataset with a wide variety of
sound events can be useful in solving audio tasks beyond sound events.

Compared to computer vision, there has been little work on transfer learning for audio tasks.
Most of the works are in speech and music domain [Coutinho et al., 2014, Deng et al., 2013,
Huang et al., 2013, Van Den Oord et al., 2014]. [Huang et al., 2013] proposed a multilingual
DNN, with shared hidden layers for speech recognition. The framework follows the multi-task
learning approach. [Van Den Oord et al., 2014] used supervised pre-training on a large dataset
to learn discriminative features for music classification tasks. [Deng et al., 2013, Van Den Oord
et al., 2014] again learns features through transfer learning using deep denoising autoencoders.
They apply it in the domain of emotion recognition in speech. In another early work [Kumar
et al., 2014], we looked into how a model trained on one set of sound events performs on another
set of sound events. The context, in this case, was to explore the idea of sound objects, rather
than explicit transfer learning. [Ntalampiras, 2017] interestingly explores emotions in music and
sounds. They use a transfer learning framework where sounds and music aid each other for
the automated understanding of emotions evoked through sounds and music. [Lim et al., 2016]
used fine-tuning for transfer learning from speech to sounds. They first train a network using
speech data and then fine-tune it for sound event classification. [Wang and Metze, 2017] used the
SoundNet architecture from [Aytar et al., 2016] to obtain representations for audio recordings.

To circumvent the problem of lack of large sound event datasets, Soundnet [Aytar et al.,
2016] proposed to transfer knowledge from vision models for audio tasks. They use CNN models
trained for visual objects and scenes to teach a feature extractor network for audio. However, it
remains to be seen how a more direct approach of audio to audio knowledge transfer can be done.

98

Figure 6.2: Transfer Learning Framework

Top Left and Right: Deep CNN (Nwlat
A) for Weakly Labeled Audio. Bottom Left:

Adapting CNN for target task. 3 different methods (I, II, III) are proposed. Parameters from
B1 to F1 (or up to F2) are transferred. F1 and (or) F2 onwards are adapted for target task.

Newly added layers are shown in green outline. Layers which are updated during task adaptive
training are shown in dashed outline. Bottom Right : Obtaining representations for audios.

Network can be NS or one of N I
T , N II

T , N III
T .

In our work [Kumar et al., 2018], we proposed methods to effectively transfer knowledge from
a CNN based sound event model trained on a large dataset (Audioset). We first train a deep
CNN model on Audioset, a dataset which provides weakly labeled audio examples from YouTube
for 527 sound events. The network is trained on the weakly labeled dataset using the methods
proposed in the previous chapter. We then use the network to learn representations for the target
tasks. Our method achieves state of the art performance on sound event classification task on
data from a different domain. Moreover, we show that transfer learning can not only be used for
acoustic scene classification but instead can also establish commonsense relations between scenes
and sound events.

6.2 Transfer and Representation Learning

We present methods for transfer learning using a deep convolutional neural network trained on
a large scale dataset. More specifically, we consider Audioset, which contains weakly labeled
recordings for 500 sound events. Hence, the source domain and task are Audioset and sound
event detection on Audioset, respectively. We use the methods described in the previous chapter
to train a deep CNN on Audioset. Specifically, we use the network Nwlat

A (Figure 4.9), trained
on Audioset as the source model, from which knowledge is used for the target task.

Figure 6.2 shows the overall process for transfer learning. Parameters from the network,
Nwlat
A are transferred to learn representations for the target task. Segment level outputs from F1

(1024×K × 1) and F2 (CS ×K × 1) serve as the base representations for the audio recordings.
These segments level representations are then mapped to full recording level representations.
We apply either max() or avg() for this mapping. Finally, we obtain 1024 (F1) or CS (F2)
dimensional representations for full recordings.

During Nwlat
A training on the source task, the blocks from B1 to B6 embed knowledge from

source audio data into F1, which is then mapped to source labels by filters in F2. This makes

99

F1 well suited for transfer learning, where it can be used to train classifiers for the target task.
Moreover, outputs from F2 gives us a distribution over the source labels which itself can be useful
for the target task, provided Nwlat

A is trained over a large collection of sound events. We propose
two broad methods for representation learning for audios in target tasks using Nwlat

A .

6.2.1 Direct Off-the-shelf Representations

In this method, Nwlat
A is treated in a ready to use mode for obtaining representations. Logmel

spectrograms of audio recordings from target task are fed into Nwlat
A and segment level repre-

sentations are obtained from it. These segment level representations, from F1 or F2, are then
mapped to recording level representation. As specified before, we use max() or avg() functions
to obtain recording level representations. The max() operations takes the maximum in a given
dimension across all segments. The avg() function, on the other hand, takes the average over all
segments in each dimension. Finally, the representations from F1 leads to a 1024 dimensional
vectors, whereas those from F2 leads to Cs dimensional vectors.

6.2.2 Transfer and Adapt for Learning Representations

In the second method, we first adapt the network to the target task and then extract features.
We expect that this adaptation will lead to more discriminative features and consequently, better
suited for the target classification task. The network is adapted for the target task by fine-tuning
the network parameters to the target task. We propose three methods to achieve this goal.
The methods are shown in Figure 6.2. In all three methods, the parameters from B1 to B6 are
transferred and are not updated during the target adaptation training. We use CT to represent
the number of classes in the target task.

Method I (N I
T)

N I
T performs a direct adaptation of F1 to the target task. Here, F2 is replaced by a new convo-

lutional layer (FT) with CT filters. The filters are of size 1 × 1. Parameters in F1 and FT are
then updated using the training set of the target task. We refer to this network as N I

T . Once the
network has been fine-tuned, it is then used to obtain representations for the recordings in the
target task. The procedure follows the same process as above. Note that, F2 layer representations
will not be available using N I

T .

Method II (N II
T)

In N II
T , a new convolutional layer (FT) with CT filters is added to the network,Nwlat

A , after
F2 layer. This new network, N II

T , is then adapted for the target task. As shown by dashed
boundaries in Fig 6.2, during the adaptive training only F1, F2 and FT are updated. The idea is
to capture target specific information by first transitioning to source label space (F2) and from
there going to target label space. Representation from both F1 and F2 layers are obtained in this
case.

Method III (N III
T)

In N III
T , a new fully-connected layer FT of size CT is added after the segment to the recording

level mapping function. It implies in Nwlat
A , the FT layer is added after the mapping function

100

layer G. Once again, only F1, F2, and FT are updated during network adaptation training. The
motivation behind this network is same as N II

T , except that it tries to learn the mapping at full
recording level instead of segment level. Note that in both N II

T and N III
T , the activation function

in F2 are changed to ReLU from sigmoid in Nwlat
A . Once the network has been adapted to the

target task, we obtain representations as described previously.

For all three adapted networks N I
T , N II

T and N III
T , if the target task is a multi-label problem,

then the activation in the final layer is kept as sigmoid, and the loss function defined in Eq 4.9
is used. However, if the target task audios have a single label, then we can use softmax output
with categorical cross entropy loss.

A few points are worth noting. First, the target task can have audio recordings of different
length, and our proposed methods can handle such cases efficiently. The network, Nwlat

A , has
been designed to handle recordings of variable durations and this property is kept intact in all
networks for adaptation as well. Moreover, the target task dataset can either be strongly or
weakly labeled, and the proposed methods can be used to learn representations in both cases.
In fact, the segment level representations can be used in MIL framework, if the target task is a
weak label learning problem. Lastly, to emphasize again, the focus is on exploiting NS to learn
representations for audios in the target task. The fine-tuning on the target task is done to combine
knowledge from both the source and target domain to obtain features which are expected to be
more discriminative for the target task. Once the representations have been obtained, they can
be used for the target task in any manner with a variety of other machine learning algorithms.
If the target task is a classification problem, then classifiers such as Support Vector Machines
(SVMs) can be easily trained on these representations.

6.3 Target Tasks

We apply the transfer learning to two problems. The source domain data and the source task
in both cases, sound event recognition on Audioset. We consider two target tasks, sound event
classification and acoustic scene classification. The datasets for both target tasks are relatively
much smaller than the Audioset, and we expect that through transfer learning we should be able
to exploit the knowledge from Audioset to improve the learning in both cases.

6.3.1 Sound Event Classification On ESC-50 dataset

The first task is again looking at the problem of sound event classification. We work on sound
event classification on a well known and standard dataset called ESC-50 dataset [Piczak, 2015b].
ESC-50 dataset consists of a total of 50 sound events. The sound events in this dataset falls
under 5 broad categories, namely, Animals, Natural Soundscapes and Water Sounds, Human
Non-Speech Sounds, Domestic Sounds and Exterior Sounds. Sound events from each of these
categories are:

� Animals Sounds: Dog, Pig, Cat, Rooster, Cow, Frog, Hen, Insects, Sheep, Crow

� Natural Soundscapes and Water Sounds: Rain, Sea waves, Crackling Fire, Crickets,
Chirping birds, Water drops, Wind, Pouring Water, Toilet Flush, Thunderstorm

� Human Non-Speech Sounds: Crying baby, Sneezing, Clapping, Breathing, Coughing,
Footsteps, Laughing, Brushing teeth, Snoring, Drinking-sipping

101

� Domestic Sounds: Door Knock, Mouse click, Keyboard typing, Door-wood creaks, Can
opening, Washing machine, Vacuum cleaner, Clock alarm, Clock tick, Glass breaking

� Exterior Sounds: Helicopter, Chainsaw, Siren, Car horn, Engine, Train, Church bells,
Airplane, Fireworks, Hand saw

The dataset contains 40 recordings for each sound event, leading to a total of 2,000 recordings.
Each recording is 5 seconds long, and the overall dataset is around 2.8 hours of audio data. The
recordings were obtained from Freesound.org [fre].

In transfer learning, the source and target domains are different if either the feature space
between the domains are different (XS 6= XT) or the marginal probability distributions are differ-
ent for the same feature space, that is P (XS) 6= P (XT). The tasks are said to be different when
either, YS 6= YT , that is the label spaces are different, or when the conditional distributions of
the labels in the domains are different, that is P (YS |XS) 6= P (YT |XT).

For sound event classification on the ESC-50 dataset, the label spaces are clearly different. In
fact, some of the events from the target task not present in the source task. We use Logmel features
to represent audio recordings in both source and target domains. However, given the significantly
different sources of the two datasets Audioset (YouTube) and ESC-50 (Freesound), the marginals
over the data are expected to very different. Put simply, the nature and characteristics of the
audio recordings are very different between the two datasets. However, given that the two domains
are related, transfer learning can be very effective in improving the learning task on the ESC-50
dataset.

6.3.2 Acoustic Scenes Classification

The second task we consider is acoustic scene classification. We use DCASE 2016 [Mesaros et al.,
2016] for acoustic scenes. The dataset consists of 15 different acoustic scenes, namely, beach, bus,
cafe/restaurant, car, city center, forest path, grocery store, home, library, metro station, office,
urban park, residential area, train and tram.

The recordings in the dataset were manually recorded at different locations. The recordings
were recorded at 44.1 KHz sampling rate and 24-bit resolution. The other details of the recording
method and conditions can be found in [Mesaros et al., 2016]. The dataset consists of 78 examples
of each acoustic scene. Each recording is 30 seconds long, and the overall dataset consists of
around 9.75 hours of audio data.

For this scene classification task, clearly, both the domain and the task are different. However,
the two tasks are still related. An acoustic scene is composed of different sound events and
knowledge transfer from a large scale dataset should be able to improve the learning of scene
recognition. In fact, in our experiments and results, we explicitly show how semantic relations
between sounds and scenes can be established through this transfer learning process.

6.4 Experiments and Results

6.4.1 Experimental Setup Details

All audio recordings are sampled at 44.1 KHz sampling rate and represented by Logmel spec-
trograms. A window of 23 ms moving with an overlap of 11.5 ms is used for obtaining logmel
features. 128 mel-bands are used in the feature extraction process. The source network, Nwlat

A ,
is trained on Audioset as described in Section 4.3.

102

Methods Mean
Accuracy

Piczak [Piczak, 2015a] 64.5 %

Tokozume [Tokozume and Harada, 2017] 71.0 %

SoundNet [Aytar et al., 2016] 74.2 %

Arandjelovic [Arandjelovic and Zisserman, 2017] 79.3%

Human Performance [Piczak, 2015b] 81.3%

Proposed (F1) 83.5 %

Network F1 F2
max() avg() max() avg()

Nwlat
A 82.8 81.6 65.5 64.8

N I
T 83.5 81.3 – –

N II
T 83.5 81.8 81.9 81.5

N III
T 83.3 82.6 82.6 81.9

Table 6.1: Transfer Learning: ESC-50 results
Left : ESC-50 Accuracy comparison with baselines. Right : Comparison of accuracies for different
representations obtained from different networks

ESC-50 comes pre-divided in 5 folds. 4 folds are used as training set, and the fifth fold is used
for the test. This is done all five ways so that each fold becomes the test set and average accuracies
over all five runs are reported. The average human accuracy on this dataset is 81.3% [Piczak,
2015b]. The human accuracy numbers vary from as low as 34.1% for washing machine sound
to as high as 100% for crying babies and dog barking. In general, soundscapes and mechanical
sounds are harder for humans to recognize, whereas animals and humans sounds are relatively
easier to recognize.

DCASE16 also comes pre-divided into four folds. A similar procedure is used in this case as
well, three folds are used for training and fourth as the test set. Once again this is done all four
ways, and average numbers over all four runs are reported. The performance of human subjects
on scene classification is surprisingly low, at 54.4% [Mesaros et al., 2017]. This performance
is considerably lower than the baseline method using MFCCs and Gaussian Mixture Models
(GMMs) [Mesaros et al., 2016]. The baseline classification accuracy is 72.5%. The accuracy on
individual acoustic scenes varies from 98.6% for Office to 13.9% for Park.

Acoustic scene classification is considerably harder for humans, as is evident from the low
average accuracy. Humans understand acoustic scenes in a very sophisticated manner, often
relying on other cues such as vision and familiarity. In [Mesaros et al., 2017], the authors report
that human subjects familiar with Finnish soundscapes (the place where examples were recorded),
had a higher recognition accuracy of 60.4%. Overall, acoustic scene classification is a complex
problem and knowledge transfer using a large sound event dataset can be crucial in improving
acoustic scene recognition systems.

For the task adaptive training of Nwlat
A , the training set of the target task is used. Learning

rate during this process is fixed to 0.0002 and updates are done for 50 epochs, after which the
network is used to obtain representations. Linear SVMs [Fan et al., 2008] are then trained on the
representations obtained from different methods. The slack parameter C in the SVM formulation
is tuned by cross-validation on the training set.

6.4.2 Results: Sound Event Classification on ESC-50

Left table in Tab. 6.1 compares mean accuracy over all 50 classes with state-of-art on the
ESC-50 dataset. We outperform SoundNet by 9.3%, and [Arandjelovic and Zisserman, 2017] by
4.3%. SoundNet is also a transfer learning system where knowledge is transferred from vision to
audio. [Arandjelovic and Zisserman, 2017] is again a multi-modal framework where knowledge
from both vision and audio are used to learn representations. Our method sets state-of-the-art
performance on ESC-50 and outperforms even human accuracy on this task. This shows that
our audio to audio transfer learning approach is able to successfully transfer knowledge from the

103

Hardest 10 Easiest 10

Event Human SoundNet Proposed (F1, N II
T) Event Human SoundNet Proposed (F1, N II

T)

Washing machine 0.342 0.40 0.53 Siren 0.926 0.82 0.88

Wind 0.458 0.50 0.55 Coughing 0.935 0.85 0.90

Crickets 0.518 0.55 0.88 Cow 0.941 0.78 0.85

Vacuum cleaner 0.577 0.62 0.75 Sheep 0.949 0.78 0.95

Crackling fire 0.634 0.78 0.90 Church bells 0.952 0.90 1.0

Helicopter 0.639 0.38 0.33 Laughing 0.973 0.60 0.78

Mouse click 0.65 0.68 0.70 Insects (flying) 0.987 0.55 0.78

Train 0.667 0.78 0.88 Crying baby 0.987 0.90 0.95

Airplane 0.679 0.45 0.62 Glass breaking 0.987 0.90 0.95

Fireworks 0.68 0.72 0.85 Dog 1.0 0.82 0.90

Table 6.2: Accuracy (×100%) comparison for 10 easiest and 10 hardest sounds in ESC-50

source domain to the target domain, and improve the learning of the target task.

The right table in Tab. 6.1 shows the performance of different representations proposed in
this work. The row shows the different networks from which the representations were obtained,
and columns show the two main types of representations we obtain, each corresponding to a layer
in our network design. The networks can obviously be Nwlat

A trained on Audioset or the three
adapted networks, N I

T , N II
T , N III

T . The features correspond to either the F1 or the F2 layer in
our network architecture, and then the segment level representations from these layers can be
mapped through max() or avg() as described before.

Note that, even off-the-shelf F1 representations using Nwlat
A is able to achieve very high

accuracy. This shows that our weakly labeled network, Nwlat
A is can actually capture knowledge

which can be directly exploited for other sound related tasks.

Task adaptive training gives further improvement. Adaptation updates the network more
towards the target label space leading to more discriminative features. F1 features in general
work better than F2 layer features. Without adaptation, the representations from the F2 layer
does not work well. However, F1 representation, which performs well even without adaptation,
captures more generic characteristics of sounds from the source domain and is well suited to train
an even simple linear classifier. Adaptation leads to improvement for all features and both N I

T

and N II
T leads to the best-performing accuracy of 83.5%. As far as the segment to recording

mapping is concerned, max() mapping does better in all cases.

Figure 6.3 shows accuracy on each sound class using F1 features (max() mapping) obtained
from N II

T . Readers are requested to visit this webpage 1 for visually more pleasing figure as well
as for performance numbers in other cases.

In Figure 6.3, the accuracy is 100% for some of the sound events, Pouring Water, Church
Bells. More than 15 sound classes have 90% or higher accuracies. The lowest accuracy is obtained
for Helicopter sounds, 33%. From the confusion matrix, it is clear that Helicopter sounds are
confused a lot with Engine and Airplane sounds. The percent confusion with Engine and Airplane
stands at 17% and 15%, respectively. Engine and Airplane sounds are very similar to Helicopter
sounds and it is expected that differentiating them will be hard. Human accuracy for this class is
around 63.9% and the confusion with Engine and Airplane stand at 12.5% and 18% respectively.
Some other classes with performances in the lower end are, Washing Machine (53%), Wind (55%).

To better understand, how our transfer learning method stack up against human performance
and SoundNet, we show compare accuracies for 10 easiest and 10 hardest classes in Table 6.2. The
ten easiest and hardest sound classes were selected based on the human classification accuracy.

1http://www.cs.cmu.edu/%7Ealnu/TLWeak.htm

104

http://www.cs.cmu.edu/%7Ealnu/TLWeak.htm

Figure 6.3: Transfer Learning: ESC-50 classwise accuracies

We can see that for sounds which are hard for humans to recognize, we can improve the accuracy
by a considerable amount in several cases. For example, for crackling fire we improve the accuracy
by 26%. Except for Helicopter our method is better than SoundNet in all cases. However, for
sounds which are easier to recognize for humans, it is not easy to achieve accuracies which are
very similar to human performance. The performance of our system is comparable to the human
performance in some cases, whereas in some other cases it is considerably lower.

6.4.3 Results: Acoustic Scene Classification

Upper table in Table 6.3 compares accuracies for different acoustic scenes between the baseline
and one of our proposed method. An absolute improvement of 4.1% over all 15 scenes is observed.

105

Scene Baseline N III
S (F1, max()) Scene Baseline N III

S (F1, max())

Beach 69.3 71.9 Library 50.4 73.6

Bus 79.6 82.4 Metro Station 94.7 80.2

Cafe 83.2 73.8 Office 98.6 85.1

Car 87.2 89.9 Park 13.9 46.9

City Center 85.5 93.3 Residential Area 77.7 63.9

Forest Path 81.0 97.4 Train 33.6 52.3

Grocery Store 65.0 84.6 Tram 85.4 84.0

Home 82.1 69.4 Mean 72.5 76.6

Network F1 F2 Network F1 F2

max() avg() max() avg() max() avg() max() avg()

NS 72.2 69.8 59.1 60.4 N II
T 75.5 73.0 73.8 73.9

N I
T 75.2 73.7 – – N III

T 76.6 73.7 72.5 73.3

Table 6.3: Transfer Learning: DCASE16 results
Upper : DCASE 2016 accuracy comparison with baseline Lower : Accuracy comparison of

different representations.

Categories Human Proposed (Transfer
Performance Learning) N IIT , F1

Animals 86.4 86.0

Natural Soundscapes and Water 73.0 86.5

Human Non-Speech 89.5 85.0

Domestic 77.9 81.5

Exterior 79.9 78.3

Table 6.4: Transfer Learning: ESC-50 higher level categories

For certain scenes which are hard to classify such as Park and Train, absolute improvements of
33.0% and 18.7% respectively are obtained. Note that for this task, representations from task
adapted networks perform much better compared to those obtained directly from Nwlat

A . Since
the task of acoustic scene classification is very different from the source task of sound event
recognition, the adaptation of the network to the target task is more important in this case.
Among the networks, the representation obtained from N III

T gives best results, followed closely
by N I

T and N III
T . Representations from the F1 layer is again more suited for SVM classifier

compared to F2 layer representations. Once again max() mapping performs better compared to
avg().

Figure 6.4 shows the confusion matrix for our system. The lowest accuracy is obtained for
Park, which is heavily confused with residential area. The other class with low accuracy is train,
which is confused with acoustic scenes from Bus. Car, City center and Forest Path are acoustic
scenes which have high accuracies. Readers can visit this webpage1 for confusion matrices of
other cases. Some additional analysis is provided in the next section.

6.4.4 Additional Analysis

In this section, we show some additional analysis on the two tasks to obtain some semantic
understanding through the described transfer learning framework. We start by showing the

106

Figure 6.4: Transfer Learning: DCASE16 classwise accuracies

accuracies for the 5 broader categories in the ESC-50 dataset in Table 6.4. The accuracies are
obtained by averaging the accuracies for sound events under each broad category. We see that
Animals and Human Non-Speech sounds are easier to recognize and both humans and our system
does well in these categories. Our transfer learning based system is able to achieve considerable
improvement for Natural Soundscapes and Water sounds over human performance on the sounds
of this class.

Visualizations

We now try to draw some semantic inferences from the proposed methods. Left panel in Fig
6.5 shows 2 dimensional t-SNE [Maaten and Hinton, 2008] embeddings for representations ob-
tained for ESC-50. The embeddings are color coded for the 5 broad categories in the ESC-50
dataset, semantically higher level groups for sound events. One can note from the plot that these
representations are capable of capturing higher level semantic information. Vacuum Cleaner in

107

Figure 6.5: Visualizations of Learned Representations
Left : t-SNE visualizations for ESC-50. Color coded for 5 higher semantic categories Top
Right : t-SNE visualizations for DCASE 2016. First alphabet for some, e.g (F)orest.

Domestic closely resembles Chainsaw, Engine and Handsaw in Exterior category and its repre-
sentations also lies closer to Exterior sounds (blue dots among purple). Similarly, visualization
for 15 acoustic scenes is shown in the right panel in Fig. 6.5. These visualizations show that
the representations we learn through our methods are capable of embedding the sounds in vector
space.

Acoustic Scene - Sound Event Relations

Acoustic scenes are often composed of multiple sound events, and in fact, acoustic scenes can
often be understood through sound events. In general, there are sound events which we expect to
find in an environment or scene. For example, in Park we expect to find sound such as Bird Song,
Crow, Wind Noise etc. These scenes - sound event relations can be helpful for not only acoustic
scene classification task, but in general for building acoustic intelligence in machines. These
semantic relations can be used for obtaining higher level semantic information which can further
help in human-computer interaction and development of audio based context-aware systems. We
looked at these relations previously in Chapter 2, where we tried to automatically mine scene -
event relations through text. Here, we try to examine if our transfer learning strategies can help
us in establishing meaningful scene - event relations for sounds through audio recordings and
trained models.

Our source model has been trained on over 500 sound events. Hence, if our source model has
actually learned some useful information, then we should be able to observe some meaningful
relations between the acoustic scenes and sound events. We consider the network which has been
adapted for the scene - classification task, N III

T .

Each neuron in F2 is essentially representing a sound event class, and the activations of these
neurons can be used to understand scene-event relations. For each input of a given scene, we
list the Top 5 maximally activated neurons (events) in the F2 layer. We then note the events
which occurred frequently in these lists. We consider the top 10 highly frequent events. These
highly active sound events for some of the scenes are shown in Table 6.5. We observe that several
of these sound events are expected to occur in the corresponding acoustic scene. Hence, these
scene-events relations are semantically meaningful. This shows that our network managed to

108

Scene Frequent Highly Activated Sound Events

Cafe Speech, Chuckle-Chortle, Snicker, Dishes, Television

City Center Applause, Siren, Emergency Vehicle, Ambulance

Forest Path Stream, Boat Water Vehicle, Squish, Clatter, Noise, Pour

Grocery Store Shuffle, Singing, Speech, Music, Siren

Home Speech, Finger Snapping, Scratch, Dishes, Baby Cry, Cutlery

Beach Pour, Stream, Applause, Splash - Splatter, Gush

Library Finger Snapping, Speech, Fart, Snort

Metro Station Speech, Squish, Singing, Siren, Music

Office Finger Snapping, Snort, Cutlery, Speech, Cutlery

Residential Area Applause, Crow, Clatter, Siren

Park Bird Song, Crow, Stream, Wind Noise, Stream

Table 6.5: Acoustic Scene - Sound Event Relations through transfer learning
Sound Events which are frequently among Top 5 maximally active events for a given scene.

transfer knowledge and learn relationships successfully.

6.5 Summary and Conclusions

In this chapter, we proposed methods for transfer learning in the domain of sounds. We presented
methods which not only obtained state of the art performances in the event classification task
but are also helpful in relating acoustic scenes to sound events. More specifically, we use a deep
CNN network trained on a large scale weakly labeled dataset to transfer knowledge to target
tasks. Our method does this by learning representations for audio recordings in the target task.
A few prior works in transfer learning in the audio domain exist, primarily in speech and music
domain. However, to the best of our knowledge, our work is the first work to show transfer
learning for sound events through a large scale weakly labeled data. It is expected that sound
related knowledge can be useful in other audio or video tasks. Our transfer learning can be helpful
in even speech related tasks in audio or videos. For example, speaker identification and emotion
recognition in consumer-generated videos. These videos are often recordings in environments
where a number of other sounds are present, and the knowledge of sounds might be useful in
improving the learning in these tasks. It can be useful for video concept detection or multimedia
event detection in web videos. One recent work [Shah et al., 2018a] applied our method in activity
recognition in short videos. We expect that this can be extended to several other tasks which
can benefit from the knowledge of sounds.

109

Chapter 7

Evaluation on Large Scale: Limited
Labeling Budget

Testing leads to failure, and failure leads to understanding.

-Burt Rutan

7.1 Introduction

The previous chapters on the automated understanding of sounds focused on the model learning
aspect. First, we looked into methods to mine sound related knowledge from large text corpora,
keeping the supervision required to a minimum and hence reducing the labeling effort. Then we
described methods for sound events recognition using weakly labeled data, where once again the
motivation was to reduce the labeling efforts. The central theme was to build learning methods
for acoustic intelligence in machines through methods which reduce the labeling efforts and help
scale the system. However, an equally important aspect of machine learning methods is evaluation
of training algorithms. A learning method cannot be properly understood without a thorough
evaluation. As we move towards large-scale learning, we need to evaluate on large test sets as
well. This is necessary to understand the suitability of the applied machine learning algorithm
in solving the concerned problem as well as to compare two different learning methods.

As pointed several times in the previous chapters, labeling data is a tedious and expensive
procedure. Hence, an important focus area in the machine learning community is to develop meth-
ods which can reduce labeling efforts while maintaining or improving the system’s performance.
There have been concrete efforts to reduce the dependence on labeled data for training phase
by developing weakly supervised, semi-supervised and unsupervised machine learning methods.
However, labeling requirement in the evaluation of trained models is a problem which has not
received requisite attention despite its immense significance. Irrespective of the method employed
in the training phase, the testing phase always requires labeled data to compute classifier perfor-
mance. Given that labeling is costly, the general tendency is to utilize most of the available
labeling resources in obtaining training data. This leaves us wondering about the best strategy
to evaluate classifier performance under limited labeling resources.

110

The answer to this problem is necessary as we move more and more towards big data machine
learning; classifier evaluation on large datasets needs to be addressed along with classifier training.
It is worth noting that this problem is completely different from cross-validation or any such
method employed to measure the goodness of classifier during training phase. How the classifier
is trained is immaterial to us here, the goal is to accurately estimate the performance of a given
trained classifier on a test set with as little labeling effort as possible.

A trained classifier is almost always applied on a dataset which was never seen before and to
estimate classifier performance on that dataset we require it to be labeled. This is also the case
when a classifier is deployed into some real-world application where test data can be extensive
and labeling even a small fraction of it might be very difficult. Consider, for example, a sound
(or multimedia) event detection system deployed for event detection or content-based retrieval
of videos on YouTube. We would like to get a good estimate of the performance of our trained
system on the massive amount of YouTube videos. Even though we can run our system through
millions of YouTube videos, we can label only a tiny fraction of them to compute the classifier
performance.

Moreover, one might have to evaluate classifier as test data keeps coming in actively. Once
again we may wonder if we should spend labeling resources on the new data or not. In other
words, we would like to know if labeling the new data and evaluating the system on it will
reveal some additional information about the classifier or not. All of these makes testing phase
important where labeled data is needed to evaluate classifier. Yet, very little effort has been made
to address the constraints posed by labeling costs during classifier evaluation phase.

One might argue that in certain cases, especially for web data we can automatically obtain
labels and then evaluate the system using those labels. For example, we can try to obtain labels
for YouTube videos through automated methods. However, as pointed out in the previous chapter
these labels are expected to be noisy, and the estimate of the performance using these labels can
be far off from the actual performance. Hence, even though in theory this approach sounds
reasonable, it will require the development of methods which can automatically label web data
without mistake. In [Badlani et al., 2018], we illustrate this aspect for audio event recognition
and show that the evaluation of a system on a large scale can be a real challenge.

Our goal is to estimate the accuracy of a trained classifier on large test set [Kumar and Raj,
2018a]. The labeling resources are limited, meaning the maximum number of instances from the
test data for which labels can be obtained is fixed and in general very small compared to the
whole test set. Hence, the problem boils down to sampling instances for labeling such that the
accuracy estimated on the sampled set is a close approximation of true accuracy. The simple
strategy, of course, is simple random sampling – randomly drawing samples from the test set.
This approach is, however, inefficient, and the variance of the accuracy estimated can be quite
large. Hence, the fundamental question we are trying to answer is: can we do better than random
sampling, where the test instances or samples to be labeled are selected from the whole test set?

The answer to the above solution lies in Stratified Sampling, which is a well-known concept in
statistics Cochran [2007]. In stratified sampling, the idea is to divide the data into different strata
and then sample a certain number of instances from each stratum. The statistical importance of
this process lies in the fact that it usually leads to a reduction in the variance of the estimated
variable. We will treat the problem from generic machine learning perspective and not in the
specific context of sound events. We briefly discuss some related works in the next section.

111

7.1.1 Related Works

Some attempts have been made for unsupervised evaluation of multiple classifiers Jaffe et al.
[2014], Parisi et al. [2014], Platanios et al. [2014], Donmez et al. [2010]. All of these works try to
exploit outputs of multiple classifiers and use them to either rank classifiers, estimate classifier
accuracies or combine them to obtain a more accurate metaclassifier. Although unsupervised
evaluation sounds very appealing, these methods are feasible only if multiple classifiers are present.
Moreover, assumptions such as the conditional independence of classifiers in most cases and/or
knowledge of the marginal distribution of class labels in some cases need to be satisfied. In
contrast, our focus is on the more general and practical case where the goal is to estimate the
accuracy of a single classifier without the aid of any other classifier. The labeling resources are
limited, meaning the maximum number of instances from the test data for which labels can be
obtained is fixed and in general very small compared to the whole test set.

Very few works have looked into sampling techniques for classifier evaluation Bennett and
Carvalho [2010],Druck and McCallum [2011],Katariya et al. [2012],Sawade et al. [2010]. Bennett
and Carvalho [2010] and Druck and McCallum [2011] also used stratification for estimating clas-
sifier accuracy. Both of these works showed that stratified sampling, in general, leads to a better
estimate of classifier accuracy for a fixed labeling budget. However, several important aspects
are missing in these works, such as a theoretical study of the variance of the estimators, thor-
ough investigation into stratification and allocation methods, the effect of the number of strata in
stratification, and also evaluation of non-probabilistic classifiers. Other factors such as analysis
of the dependence of the variance on the true accuracy are also missing. We formalize concepts
related to stratified sampling based estimation and comprehensively analyze different aspects of
it.

We establish variance relationships for accuracy estimators using both random sampling and
stratified sampling. The variance relations not only allow us to analyze stratified sampling for
accuracy estimation in theory but also allows to directly compare variances in different cases
empirically, leading to a comprehensive understanding. We propose two strategies for practically
implementing Optimal allocation in stratified sampling. We show that our proposed novel itera-
tive method for optimal allocation offers several advantages over the non-iterative implementation
of optimal allocation policy. The most important advantage is more precise estimation with lesser
labeling cost. On the stratification front, we employ a panoply of stratification methods and an-
alyze their effect on the variance of estimated accuracy. More specifically, we not only look into
stratification methods well established in the statistical literature of stratified sampling but also
consider clustering methods for stratification which are not directly related to stratified sampling.

Another related aspect studied here is the effect of the number of strata on the estimation of
accuracy. We show the success of our proposed strategies on both probabilistic as well as non-
probabilistic classifiers. The only difference between these two types of classifiers lies in the way
we use classifier scores for stratification. We also empirically study the dependence of preciseness
in accuracy estimation on the actual value of the true accuracy. Put simply, we look into whether
stratified sampling is more effective for a highly accurate classifier or for a classifier with not so
high accuracy.

In this work, we use only classifier outputs for stratification. This is not only simpler but also
less restrictive compared to cases where the feature space of instances is used for stratification
Katariya et al. [2012]. There are a number of cases where the feature space might be unknown due
to privacy and intellectual property issues. For example, online text categorization or multimedia
event detection may not give us the exact feature representations used for the inputs. These

112

systems usually just give confidence or probability outputs of the classifier for the input. Medical
data might bring in privacy issues in gaining knowledge of the feature space. Our method based
only on classifier outputs is much more general and can be easily applied to any given classifier.

7.2 Accuracy Estimation

Let D be a dataset with N instances where ith instance is represented by ~xi. We want to estimate
the accuracy of a classifier C on dataset D. The score output of the classifier on ~xi is C(~xi) and
the label predicted by C for ~xi is l̂i. Let ai be instance specific correctness measure such that
ai = 1 if li = l̂i, otherwise ai = 0. Then the true accuracy, A, of the classifier over D can be
expressed by Eq 7.1.

A =

∑N
i=1 ai
N

(7.1)

Eq 7.1 is nothing but the population mean of variable ai where D represents the whole population.
To compute A, we need to know li for all i = 1 to N . Our problem is to estimate the true accuracy
A of C under constrained labeling resources, meaning only a small number of instances, n, can
be labeled. Under these circumstances we expect to chose samples for labeling in an intelligent
way such that the estimated accuracy is as precise as possible. Mathematically, we are interested
in an unbiased estimator of A with minimum possible variance for a given n.

7.2.1 Simple Random Sampling Estimation

The trivial solution for the problem described in Section 7.2 is to randomly select n instances
or samples and ask for labels for these instances. This process is called simple random sampling
which we will refer to as random sampling at several places for convenience. Then the correctness
measure ai can be computed for these selected n instances, using which we can obtain an estimate

of A. The estimate of the accuracy is the mean of ai over the sampled set, Âr =
∑n

i=1 ai
n . Âr is

an unbiased estimator of A and the variance of Âr is given by Eq 7.2.

V (Âr) =
S2

n
, where S2 =

N∑
i=1

(ai −A)2

N − 1
(7.2)

S2 is the variance of ai over D. The variance formula above will include a factor 1− n
N if sampling

without replacement. For convenience we will assume sampling with replacement in our discussion
and hence this term will not appear. The following lemma establishes the variance S2 of ai in
terms of A.

Lemma 1. S2 for ai is given by S2 = N
N−1 ·A(1−A)

Proof. Expanding the sum in definition of S2 in Eq 7.2

S2 =
1

N − 1
(
N∑
i=1

a2i +
N∑
i=1

A2 −
N∑
i=1

2Aai)

=
1

N − 1
(N ·A−N ·A2) =

N

N − 1
·A(1−A)

113

Figure 7.1: Two Cases for Illustration

The second line follows from the fact that ai ∈ {0, 1}, hence,
∑N

i=1 a
2
i =

∑N
i=1 ai and

∑N
i=1 ai =

N ·A.

Using Lemma 1 in Eq 7.2 establishes the following result for variance of Âr.

Proposition 1. The variance of random sampling based estimator of accuracy Âr, is given by
V (Âr) = N A(1−A)

(N−1) n .

Since A is unknown, we need an unbiased estimate of V (Âr) for empirical evaluation of vari-

ance. An unbiased estimate of S2 can be obtained from a sample of size n by s2 =
∑n

i=1(ai−Âr)2

n−1 ,
Cochran [2007]. Clearly, ai here corresponds to correctness measure for instances in the sampled
set. Following the steps in Lemma 1, we can obtain

s2 =
n

n− 1
· Âr(1− Âr) (7.3)

Proposition 2. The unbiased estimate of variance of accuracy estimator Âr, is given by v(Âr) =
Âr(1−Âr)

n−1 .

Proposition 2 follows from Eq 7.3. The estimated accuracy becomes more precise as n increases
due to decrease in variance with n. The important question is, how can we achieve more precise
estimation or in other words lower variance at a given n? To understand the answer to this
question let us look at it a slightly different way. The question can be restated as how many
instances should be labeled for a fairly good estimate of accuracy A ?

Consider Figure 7.1, where green points indicate instances for which C correctly predicts
labels (ai = 1). In Figure 7.1(a), the classifier is 100% accurate. In this case a single instance is
sufficient to obtain the true accuracy of classifier. Now consider Figure 7.1(b), where the classifier
is 100% accurate in Set 1 and 100% incorrect in Set 2. Thus, labeling 1 instance from each set is
sufficient to obtain true accuracy in that set and the overall accuracy is A = 1×N1+0×N2

N . N1 and
N2 are total number of points in sets 1 and 2 respectively. This leads us to the following general
remark.

Remark 1. If D can be divided into K “pure” sets, then true accuracy can be obtained by labeling
K instances only, where 1 instance is taken from each set.

“Pure” sets imply the classifier is either 100% accurate or 100% inaccurate in each set. In
terms of the instance specific accuracy measure ai, a “pure” set has either all ai = 1 or all ai = 0.
This gives us the idea that if we can somehow divide the data into homogeneous sets then we can
obtain a precise estimate of accuracy using very little labeling resources. The homogeneity is in
terms of distribution of the values taken by ai. The higher the homogeneity of a set the lesser
the labeling resource we need for precise estimation of accuracy. Similarly, less homogeneous sets
require more labeling resources. It turns out that this particular concept can be modeled in terms
of a well known concept in statistics by the name of Stratified Sampling Cochran [2007].

114

7.3 Stratified Sampling Estimation

Let us assume that the instances have been stratified into K sets or strata. Let D1, ...,DK be
those strata. The stratification is such that D1 ∪D2 ∪ ...∪DK = D and Dj ∩Dk = ∅, where, j 6=
k, 1 ≤ j ≤ K, 1 ≤ k ≤ K. All instances belong to only one stratum. The number of instances
in strata Dk is Nk. Clearly,

∑K
k=1Nk = N . The simplest form of stratified sampling is stratified

random sampling in which samples are chosen randomly and uniformly from each stratum. If
the labeling resource is fixed at n then nk instances are randomly chosen from each stratum such
that

∑K
k=1 nk = n. In contrast to random sampling the estimate of accuracy by stratified random

sampling is given by

Âs =
K∑
k=1

Nk

N
Ârk =

K∑
k=1

WkÂ
r
k (7.4)

where Ârk = 1
nk

∑nk
i=1 ai and Wk = Nk/N are the estimated accuracy in kth stratum and weight

of kth stratum respectively. The superscript r denotes that random sampling is used to select
instances within each stratum. On taking expectation on both sides of Eq 7.4, it is straightforward
to show that Âs is an unbiased estimator of A. Under the assumption that instances are sampled

independently from each stratum, the variance of Âs is V (Âs) =
K∑
k=1

W 2
kV (Ârk). Since sampling

within a stratum is random, applying Proposition 1 to each stratum leads to following result for
the stratified sampling estimator.

Proposition 3. The variance of stratified random sampling estimator of accuracy, Âs, is given
by

V (Âs) =
K∑
k=1

W 2
k

S2
k

nk
=

K∑
k=1

W 2
k

Nk Ak(1−Ak)
(Nk − 1) nk

(7.5)

S2
k = Nk Ak(1−Ak)

(Nk−1) is the variance of the ai’s in kth stratum. Ak is the true accuracy in the kth

stratum and clearly,
∑K

k=1WkAk = A.

Similarly, Proposition 2 can be applied for each stratum to obtain an unbiased estimator of
V (Âs).

Proposition 4. The unbiased estimate of variance of Âs is

v(Âs) =

K∑
k=1

W 2
k

s2k
nk

=

K∑
k=1

W 2
k

Ârk(1− Ârk)
(nk − 1)

(7.6)

The variance for stratified sampling is directly related to the two both the way samples are
stratified and the allocation method applied on the stratified data. We discuss the allocation
method first which deals with methods for defining nk for each stratum. This allows a more sys-
tematic understanding of variance V (Âs) in different cases. We consider three different methods
for distributing the available labeling resource n among the strata.

7.3.1 Proportional (PRO) Allocation

In proportional allocation the total labeling resource n is allocated proportional to the weight of
the stratum. This implies nk = Wk × n. Substituting this value in Eq 7.5, the variance of Âs

115

under proportional allocation, Vpro(Â
s), is

Vpro(Â
s) =

1

n

K∑
k=1

WkS
2
k =

1

n

K∑
k=1

Wk
Nk Ak(1−Ak)

(Nk − 1)
(7.7)

The unbiased estimate of Vpro(Â
s) can be similarly obtained. Once the process of stratification has

been done, stratified random sampling with proportional allocation is fairly easy to implement.
We compute nk and then sample and label nk instances from kth stratum to obtain an estimate
of accuracy Ak.

7.3.2 Equal (EQU) Allocation

In Equal allocation the labeling resource is allocated equally among all strata. This implies
nk = n/K. Equal allocation is again straightforward to use for obtaining accuracy estimate.
Under equal allocation the variance of estimator Âs is

Vequ(Âs) =
K

n

K∑
k=1

W 2
kS

2
k =

K

n

K∑
k=1

W 2
k

Nk Ak(1−Ak)
(Nk − 1)

(7.8)

7.3.3 Optimal (OPT) Allocation

Optimal allocation tries to obtain the most precise estimate of accuracy using stratified sampling,
for a fixed labeling resource n. The goal is to minimize the variance in the estimation process.
Optimal allocation factors in both the stratum size and variance within stratum for allocating
resources. In this case the labeling resource allocated to each stratum is given by

nk = n
WkSk∑K
k=1WkSk

(7.9)

Using this value in Eq 7.5 the variance of Âs comes out as,

Vopt(Â
s) =

(
K∑
k=1

WkSk

)2

n
=

[
K∑
k=1

Wk

(
Nk Ak(1−Ak)

(Nk−1)

) 1
2

]2
n

(7.10)

Thus, a larger stratum or a stratum with higher variance of ai or both is expected to receive
more labeling resource compared to other strata. This variance based allocation is directly related
to our discussion at the end of Sec 7.2.1. We remarked that a stratum which is homogeneous
in terms of accuracy and hence a low variance stratum requires very few samples for precise
estimation of accuracy in that stratum and vice versa. Thus, the intuitive and mathematical
explanation are completely in sync with each other.

However, practical implementation of optimal allocation is not as straightforward as the pre-
vious two allocation methods. The true accuracies Ak’s and hence S2

k are unknown implying we
cannot directly obtain values of nk. We propose two methods for practical implementation of
optimal allocation policy.

In the first method, we try to obtain an initial estimate of all Ak by spending some labeling
resources in each stratum. This leads us to an algorithm that we refer to as OPT-A1. The
OPT-A1 method is shown in Algorithm 2. In the first step nini instances are chosen randomly

116

Algorithm 2 OPT-A1 Allocation

1: procedure OPT-A1(D1, ...,Dk,nini)
2: Randomly Select and Label nini instances from each stratum

3: Estimate Ak and then S2
k for each strata (applying Eq 7.3 for kth stratum)

4: nrem = n− (K ∗ nini)
5: Allocate nrem among strata using the estimated S2

k in Eq 7.9
6: Randomly sample again from each stratum according to above allocation
7: Update estimates of Ak and S2

k for all k
8: end procedure

Algorithm 3 OPT-A2 Allocation

1: procedure OPT-A2(D1, ...,Dk,nini,nstep)
2: Randomly Select and Label nini instances from each stratum
3: Estimate Ak and S2

k for each strata
4: nrem = n− (K ∗ nini)
5: while nrem > 0 do
6: ncurr = min(nstep, nrem)
7: Allocate ncurr among strata using current estimate of S2

k in Eq 7.9
8: Select and label new instances from each stratum according to allocation of ncurr in

previous step

9: Update estimates of Ak and S2
k for all k

10: nrem = nrem − ncurr
11: end while
12: end procedure

from each stratum for labeling. Then, an unbiased estimate of S2
k is obtained by using Eq 7.3

for kth stratum. In the last step, these unbiased estimates are then used to allocate rest of the
labeling resource (n − K ∗ nini) according to optimal allocation policy given by Eq 7.9. Then,
we sample again from each stratum according to the amount of allocated labeling resources and
then update estimates of Ak.

In theory, optimal allocation gives us the minimum possible variance in accuracy estimation.
However, allocation of n according to OPT-A1 depends heavily on initial estimates of S2

k in each
stratum. If nini is small we might not able to get a good estimate of S2

k which might result in an
allocation far from true optimal allocation policy. On the other hand, if nini is large we essentially
end up spending a large proportion of the labeling resource in a uniform fashion which is same
as equal allocation. This would reduce the gain in preciseness or reduction in variance we expect
to achieve using optimal allocation policy. The optimal allocation in this case comes into picture
for a very small portion (n−K ∗ nini) of total labeling resource.

Practically, it leaves us wondering about value of parameter nini. To address this problem
we propose another novel method for optimal allocation called OPT-A2. OPT-A2 is an iterative
form of OPT-A1. The steps for OPT-A2 are described in Algorithm 3. In OPT-A2 nini is a small
reasonable value. However, instead of allocating the remaining labeling resource in the next
step we adopt an adaptive formalism. In this adaptive formalism step we allocate a fixed nstep
labeling resource among the strata in each step. This is followed by an update in estimate of Ak
and S2

k . The process is repeated till we exhaust our labeling budget. We later show that results

117

for OPT-A2 are not only superior compared to OPT-A1 but also removes concerns regarding the
right value of nini. We show that any small reasonable values of nini and nstep works well.

7.3.4 Comparison of Variances

In this Section we study the variance, V (Âs) of stratified accuracy estimate Âs in different cases.
The first question that needs to answered is whether stratified variance V (Âs) is always lower
than random sampling variance V (Âr) for a fixed n or not. The answer depends on the sizes of
strata Nk. We consider two cases; one in which all 1/Nk are small compared to 1 and other in
which it is not.

Case 1: 1/Nk negligible compared to 1

This is the case we are expected to encounter in general for classifier evaluation and hence will be
discussed in details. In this case, it can be easily established that, V (Âr) ≥ Vpro(Âs) ≥ Vpro(Âs)
Cochran [2007]. For equal allocation no such theoretical guarantee can be established. We
establish specific results below and compare variances of accuracy estimators for different cases.
When needed, the assumption of 1/Nk << 1 will be made.

First, we consider the cases of V (Âr) and Vpro(Â
s). If 1/Nk << 1, then so is 1/N << 1.

Hence, Nk/(Nk − 1) and N/(N − 1) is almost 1. Under this assumption the difference between
V (Âr) and Vpro(Â

s) is

V (Âr)− Vpro(Âs) =
1

n
[A(1−A)−

K∑
k=1

WkAk(1−Ak)] (7.11)

=
1

n
[
K∑
k=1

WkA
2
k −A2] =

1

n

K∑
k=1

Wk(Ak −A)2 (7.12)

The second line uses the fact that A =
∑
WkAk and

∑
Wk = 1. Eq 7.12 implies that if the

stratification is such that the accuracy of the strata are very different from each other, then the
difference between V (Âr) and Vpro(Â

s) is higher. This suggests that stratification which results
in higher variance of Ak will lead to higher reduction in the variance of accuracy estimator. A
special case is when Ak is same for all k. Then Ak = A and in this case proportional allocation
in stratified sampling will result in the same variance of estimated accuracy as simple random
sampling. This implies that under this condition stratified sampling under proportional allocation
is ineffective in improving the preciseness of accuracy estimation.

For stratified sampling, Vopt(Â
s) by definition is the minimum possible variance of Âs for a

fixed n. At best we can expect Vpro(Â
s) and Vequ(Âs) to attain Vopt(Â

s). Consider the difference
between Vpro(Â

s) and Vopt(Â
s).

Vpro(Â
s)− Vopt(Âs) =

1

n

[
K∑
k=1

WkS
2
k − (

K∑
k=1

WkSk)
2

]

=
1

n
[
K∑
k=1

WkS
2
k − S2

M] =
1

n

K∑
k=1

Wk(Sk − SM)2 (7.13)

In the second step (Eq 7.13), SM =
∑K

k=1WkSk is the weighted mean of the Sk’s. The second

equality in Eq 7.13 uses the definition of SM and the fact that
∑K

k=1Wk = 1.

118

From Eq 7.13 it is straightforward to infer that Vpro(Â
s) and Vopt(Â

s) are equal if and only if
Sk = SM . This basically implies that if stratification of D is such that Sk is constant for all k
then the variance of the stratified accuracy estimator under proportional and optimal allocation
are equal. Thus, proportional allocation is optimal in the sense of variance.

Following the assumption of 1/Nk << 1, Sk = Ak(1−Ak). Let us assume that Sk = Sc for all
k, where Sc is some constant value. Sk = Sc = Ak(1−Ak) implies for a given k, the value of Ak is
one of the roots of the quadratic equation y2−y+Sc. If all Ak take the same root value, then from
previous discussion we know V (Âr) = Vpro(Â

s). Constant Sk also means Vpro(Â
s) = Vopt(Â

s).
Hence, Vpro(Â

s) = Vopt(Â
s) = V (Âr). This leads us to the following remark.

Remark 2. A stratification of D such that Ak is same for all k is the worst case stratification
where the minimum possible variance of stratified estimator Âs is same as variance of random
sampling accuracy estimator Âr.

Thus, even though Sk = Constant will lead to simpler proportional allocation achieving min-
imum possible variance, it is not a very favorable situation when compared to random sampling.
We might end up in the situation of Remark 2. Even if all Ak do not take same value, Sk = Sc for
all k implies the variance of Ak will not be very high. Hence, under this condition the minimum
possible variance Vopt(Â

s) = Vpro(Â
s) for stratified sampling won’t be significantly smaller than

V (Âr).

Now, assume WkSk = Swc for all k, where Swc is a fixed constant value. If WkSk is constant

then from Eq 7.8, Vequ(Âs) = K2S2
wc

n . Also from Eq 7.10, Vopt(Â
s) = K2S2

wc
n . Hence, a stratification

such that WkSk is a constant implies equal allocation is as good as optimal allocation. Hence, if it
can be ensured that WkSk = Constant, then the simpler equal allocation can substitute optimal
allocation.

Practical implementation of proportional and equal allocation methods are much simpler
compared to optimal allocation where we need OPT-A1 or OPT-A2. In this Section apart from
providing a comparison of variances in different cases, we looked into conditions under which
proportional or equal allocation can be used as a substitute for optimal allocation giving same
variance of estimator. For proportional allocation it did not turned out to be highly desirable
because large reduction in variance compared to simple random sampling cannot be expected.

Equal allocation seems to be a better option provided the condition of constant WkSk is
satisfied. However, this condition is important and we cannot blindly use equal allocation for any
stratification of D. This is due to the fact that unlike proportional and optimal it does not come
with a theoretical guarantee that worst case variance will be same as simple random sampling. In
fact in certain cases it can lead to a higher variance than simple random sampling. However, our
empirical evaluation suggests that equal allocation works fairly well for a variety of stratification
methods. Lastly, implementation of optimal allocation is not directly possible and it is possible
that the empirical variance of optimal allocation becomes more than that of random sampling
even if 1/Nk << 1 is satisfied. However, using our proposed algorithms OPTA1 and OPTA2 it
happens very rarely.

Case 2: 1/Nk not negligible compared to 1

In general, even for moderately sized dataset we are not expected to encounter this case. Hence,
for simplicity we only briefly discuss this case and show that under this condition Vpro(Â

s) and
Vopt(Â

s) need not always be less than V (Âr). Consider a specific case of stratification when all

119

Ak are equal. Hence, Ak = A for all k. Now, the difference between V (Âr) and Vpro(Â
s).

V (Âr)− Vpro(Âs) =
NA(1−A)

n(N − 1)
−
∑
k

Wk
NkAk(1−Ak)
n(Nk − 1)

(7.14)

Using the fact that Ak = A

V (Âr)− Vpro(Âs) =
A(1−A)

n
[
N

N − 1
−
∑
k

Nk

N

Nk

Nk − 1
]

=
A(1−A)

n

[∑
k

Nk

N − 1
−

N2
k

N(Nk − 1)

]

=
A(1−A)

n

[∑
k

− N −Nk

N(N − 1)(Nk − 1)

]

Thus V (Âr) − Vpro(Âs) < 0. Hence, proportional stratified sampling gives higher variance than
simple random sampling when all Ak = A. It is also possible to show that when S2

k is constant

then it can lead to Vopt(Â
s) = Vpro(Â

s) > V (Âr).

7.3.5 Stratification Methods

We now consider the other aspect of stratified sampling which is construction of strata. Let
us denote the variable used for stratification by z and let f(z) be the density distribution of z.
zi, i = 1 to N denotes the discrete values of stratification variable for instances in dataset D. If
the classifier outputs C(~xi) are probabilistic then we use zi = p(l̂i/~xi), that is the stratification
variable is the probability of the predicted class for ~xi. If the classifier scores are non-probabilistic
and the predicted label is given by l̂i = sign(C(~xi)), we use zi = |C(~xi)|, that is the magnitude
of the classifier output. This particular stratification variable has been designed keeping in mind
binary classifiers like support vector machines where scores of larger magnitude generally imply
a greater level of confidence in the label assigned. These two approaches can be used as a general
schema for extending the definition of the stratification variable for other types of classifier as
well.

The optimum stratification (in the sense of minimum variance) usually depends on the al-
location policy Sethi [1963]Dalenius [1950]Dalenius and Gurney [1951]. While relationships for
optimum stratification for a given allocation method exist and can be solved by complicated it-
erative procedures, a large body of stratification literature consists of approximate methods for
optimum stratification.

We employ several known stratification methods for stratifying D using z. We also introduce
use of clustering and simpler rule based methods which are usually not found in stratification
literature. To estimate the density distribution f(z) of the stratification variable using zi’s, we
use Kernel Density estimation methods Friedman et al. [2001] with Guassian kernels.

cum
√

f (SQRT): This method proposed in Dalenius and Hodges Jr [1959] is perhaps the most
popular and widely used method for stratification. The method has been designed for optimum
allocation policy. The simple rule is to divide the cumulative of

√
f(z) into equal intervals. The

points of stratification, zs1 < zs2 < .. < zsK−1, correspond to the boundary points corresponding

120

to these intervals. The kth stratum consists of the set of instances for which z lies between zsk−1
and zsk. z

s
0 and zsK can be set as max and min of z.

cum f
1
3 (CBRT): This method is same as the SQRT except that the cube root of f(z) is

used in place of square root Singh [1971]. The derivation of SQRT method makes an assumption
that stratification and estimation variables are same which is usually not the case. CBRT was
proposed keeping in mind that stratification variable (z) is in practice different from estimation
variable (a) and a regression model was assumed in deriving this method. Thomsen [1976] argues
in favor of CBRT if proportional allocation is to be used.

Weighted Mean(WTMN): In this method the key idea is to to make the weighted mean
of the stratification variable constant Hansen et al. [1953]. It is much simpler compared to the
previous 2 methods and was proposed earlier to the previous two methods.

All of the previous methods try to approximate optimum stratification. These methods (SQRT
and CBRT) work well if the stratification variable and estimation variable are highly correlated
Serfling [1968]Anderson et al.. In more generic settings such as ours, no such assumption can
be made for the stratification and estimated variable. Hence, we propose to introduce other
techniques as well, which while not tailor-made for stratified sampling, can nevertheless serve as
a way for stratification.

Clustering Methods: Clustering is one of the simplest ways to group the data D into
different strata. We use K-means(KM) and Gaussian Mixture Models (GMM) based clustering
to construct strata using z.

Simple Score Based Partitioning: The stratification variable z is obtained from classifier
scores and we propose two simple partitioning methods. The first one is called EQSZ (Equal
Size) in which the instances in D are first sorted according to the stratification variable. Starting
from the top, each stratum takes away an equal number N/K of instances. It is expected that
variation of z within each strata will be small. We call the other method as EQWD (Equal
Width). In this case the range of z for D (r = max(z) −min(z)) is divided into sub-ranges of
equal width. The points of stratification are zsk = min(z) + rk/K , k = 1 to K. zs0 = min(z) is
used in this case.

7.4 Experiments and Results

The proposed methods are independent of the learning problem. Since there aren’t any large scale
dataset for audio event detection we currently evaluate the proposed method on text classification
problems.

The variance of stratified sampling depends on three important factors, Allocation Method,
Stratification Method and number of strata. We perform a comprehensive analysis of all of these
factors. Each allocation method is applied on all 7 stratification methods. We vary the number of
strata from 2 to 10 to study the effect of K. Overall, this results in large number of experiments
and we try to present the most informative results for each case in the paper.

We use three different dataset in our study. The first one, which is smallest of the three is
the News20 binary dataset. It is the 2 class form of the text classification UCI News20 dataset
Keerthi and DeCoste [2005]. It consist of a total of around 20000 instances. We use 4000 randomly
selected instances for training a logistic regression classifier and the rest are used as test set D for
which the classifier accuracy needs to be estimated. The second one is the epsilon dataset from
the Pascal Large Scale Challenge pas [2008]. It contains 0.5 million instances of which we use a
randomly selected 50, 000 for training a linear SVM. The remaining 0.45 million instances are used

121

as the test set D. The third is the two-class form of the rcv1 text categorization dataset which is
the largest of the three datasets Lewis et al. [2004]. The test set D consists of around 0.7 million
instances. A logistic regression classifier is trained on the training set. We use the LIBLINEAR
Fan et al. [2008] package for training all classifiers. All data are available for download from the
LIBLINEAR website. Experiments on the three datasets together contain sufficient variation to
study different aspects of accuracy estimation.

We will quantify our results in two ways. The first is the ratio of the variance of the stratified
accuracy estimator to a random sampling estimator at a given n, VR=V (Âs)/V (Âr). Clearly,
unbiased estimates of V (Âr) and V (Âs) are used to measure VR. Ideally VR should be less than
1; the lower it is the better it is. The second measure deals with absolute error (AE) percentage
in estimating accuracy. Specifically, we look at the AE vs n plot and observe the amount of
labeling resource required to achieve just 1% absolute error in accuracy estimates. We focus on
% reduction if any in required n to achieve 1% error when using Âs in place of Âr. All experiments
are repeated for 3000 runs and the variance and error terms are means over these runs. Hence,
we will use MVR and MAE to refer to mean variance ratio and mean absolute error respectively.

7.4.1 Proportional Allocation

Figure 7.2a shows the MAE vs. n using EQWD stratification and K = 10 for the rcv1 dataset.
The number of labeled instances required to achieve a 1% error in accuracy estimation goes down
from 284 in random sampling to 218. This is about 23% reduction in labeling resources. Figure
7.2b shows the MVR values for each stratification method at different n. We can observe that
EQWD is in general better compared to other methods leading to about 40− 45% reduction in
variance for some cases. WTMN is the worst showing only about 10% reduction in variances.
The lower n values for which results are presented in Figure 7.2b and in subsequent figures, are
in general more interesting cases. The difference between different methods are more visible and
needs to be looked into carefully at lower n.

The results for the epsilon dataset are shown in Figure 7.2c and 7.2d. EQSZ stratification
is used in Fig 7.2c. The reduction in labeling resources for 1% error in accuracy estimation is
about 12.5%. This is can be attributed to the fact that for this dataset the maximum reduction
in variance with proportional stratified sampling is in general less than 20%. EQSZ performs
only marginally better than other methods such as SQRT and CBRT. Figures 7.2e and 7.2f show
results for the news20 dataset. About 16% reduction in labeling resource can be observed for
KM stratification method shown in Figure 7.2e. Although on average across different n and K,
KM is slightly better than other methods it does not always dominate and SQRT and CBRT
work almost as well.

The variation of MVR with K for rcv1 and news20 is shown Figure 7.3a and 7.3b respectively.
Increasing K does not necessarily leads to better results. However, the general trend is that once
K is large enough major variation in MVR values cannot be expected. Hence, the parameter
K is important but setting it to fixed reasonable value which will lead to good estimation of
accuracy does not appear to be a hard problem. The trend is same for epsilon dataset and hence
not shown here for brevity.

7.4.2 Equal Allocation

The results on rcv1 dataset for Equal Allocation are shown is Figures 7.4a and 7.4b. Figure
7.4a uses KM based stratification. In this case n required for 1% error margin is reduced by

122

n

100 200 300 400 500 600 700 800 900 1000

M
A

E
(%

)

0

0.5

1

1.5

2

2.5

3

3.5

Random Sampling

Proportional Sampling

(a) rcv1, K = 10, EQWD

n

30 40 50 60

M
V
R

0.4

0.5

0.6

0.7

0.8

0.9

EQSZ

EQWD

GMM

KM

SQRT

CBRT

WTMN

(b) rcv1, K = 10

n

100 200 300 400 500 600 700 800 900 1000

M
A

E
(%

)

0

1

2

3

4

5

6

Random Sampling

Proportional Sampling

(c) epsilon, K = 10, EQSZ

n

80 100 120 150

M
V

R

0.7

0.75

0.8

0.85

0.9

0.95

EQSZ

EQWD

GMM

KM

SQRT

CBRT

WTMN

(d) epsilon, K = 10

n

100 200 300 400 500 600 700 800 900 1000

M
A

E
(%

)

0

1

2

3

4

5

6

Random Sampling

Proportional Sampling

(e) news20, K=10, KM

n

60 80 100 120

M
V

R

0.65

0.7

0.75

0.8

0.85

0.9
EQSZ

EQWD

GMM

KM

SQRT

CBRT

WTMN

(f) news20, K = 10

Figure 7.2: Proportional Stratified Sampling

a substantial amount which is close to 58.5% (from 284 to 118). Fig 7.4b shows that all
stratification barring EQSZ and WTMN gives similar reduction in variance which is in the range
of 55− 60%. Thus for rcv1 significant improvement in precision of accuracy estimates can be
obtained using the Equal allocation policy.

Results on the epsilon dataset are shown in Figures 7.4c and 7.4d. Fig 7.4c used EQSZ for
stratification, resulting in about 16% reduction in labeling resource for 1% error. However, the
more important point to be noted is that barring EQSZ all other stratification methods leads
to an increase in variance of accuracy estimates compared to random sampling. This illustrates
that equal allocation based stratified sampling does not come with the assurance that it will lead
to reduction in an estimator’s variance. The results for news20 dataset are shown in Fig 7.4e
and 7.4f. In this case about 22% reduction in labeling resource can be observed and variation
reduction lies in range of 18 − 23% in most cases. The variation of MVR with K for rcv1 and
news20 is shown in Figure 7.5a and 7.5b. The trend is similar to what we observed as before.

123

n

30 40 50

M
V
R

0.4

0.5

0.6

0.7

0.8

0.9

2

3

4

5

6

7

8

9

10

(a) rcv1, EQWD, Proportional

n

60 80 100

M
V

R

0.65

0.7

0.75

0.8

0.85

0.9

0.95
2

3

4

5

6

7

8

9

10

(b) news20, KM, Proportional

Figure 7.3: MVR Variation With K for Proportional

7.4.3 Optimal Allocation

In the previous section we observed that for rcv1 dataset Equal allocation resulted in a substantial
reduction in the variance of the stratified accuracy estimator. The optimal allocation policy
(OPT-A1 or OPT-A2) leads to further reduction in variance by only few percentage points (4−6%
more) which does not translate into significant gain in terms of labeling resource reduction. It
comes out to be slightly above 59%. However, we observe that for epsilon and news20 optimal
allocation actually results in substantial reduction in variance. We use nini = 10 for OPT-A1
algorithm. For OPT-A1 mid range K such as K = 6 or 7 are better in general, especially at
lower n. K affects the number of samples (nini ∗ K) used up for initial estimation of Sk. Mid
range K are sufficient for obtaining good stratification and at the same time we are left with
enough labeling resource which can be allocated optimally.

Figure 7.6b shows that EQSZ can results in over 30− 35% reduction in variance compared
to random sampling. In Figure 7.6a, n required for 1% error is reduced by 23% using OPT-A1
which is about 10% and 7% higher over proportional and equal allocation respectively. The
worst stratification method is EQWD which corresponds to the practical problem we stated
previously. Although, at higher n it does lead to reduction in variance it is still not as good as
other methods for stratification. For news20 OPT-A1 leads to reduction in n by about 27% for
1% error which is higher than that for proportional and equal by 11% and 5% respectively. The
variance is reduced by more than 35% for several cases which is substantially higher than other
two allocation methods.

OPT-A1 vs OPT-A2

We mentioned previously that setting the right nini in OPT-A1 might present practical difficulties.
This is illustrated in Figures 7.7a and 7.7b where we show MVR values for nini equal to 5,10
and 20. We first observe that for sufficiently high n, higher nini is better. This is expected as
increasing nini results in better estimation of Sk and for large n we are still left with enough
labeling resource which can be allocated in an optimal sense to help achieve lower variance.
However, the problem occurs for lower n where we observe that MVR first reduces by increasing
nini from 5 to 10 but then increases substantially when we increase it further to 20. Clearly, there
is some optimal value between 5 to 20 which cannot be known a priori.

To get around the problems of OPT-A1, we proposed OPT-A2. Figures 7.8a and 7.8b shows
the efficiency and benefits of OPT-A2. For both figures legend are in form nini−nstep. nini−A1
legends represent the corresponding MVR using OPT-A1. First, we observe that irrespective of
the value of nini OPT-A2 results in reduction of MVR. In comparison to OPT-A1, OPT-A2 leads

124

n

100 200 300 400 500 600 700 800 900 1000

M
A

E
 (

%
)

0

0.5

1

1.5

2

2.5

3

3.5
Random Sampling

Stratified Sampling

(a) rcv1, K = 10, KM

n

50 60 100 120

M
V

R

0

0.2

0.4

0.6

0.8

1

EQSZ

EQWD

GMM

KM

SQRT

CBRT

WTMN

(b) rcv1, K = 10

n

100 200 300 400 500 600 700 800 900 1000

M
A

E
(%

)

0

1

2

3

4

5

6

Random Sampling

Equal Sampling

(c) epsilon, K = 10, EQSZ

n

50 60 80 100

M
V

R

0.8

1

1.2

1.4

1.6

1.8

2

2.2
EQSZ

GMM

KM

SQRT

CBRT

WTMN

(d) epsilon, K = 10

n

100 200 300 400 500 600 700 800 900 1000

M
A

E
(%

)

0

1

2

3

4

5

6

Random Sampling

Equal Sampling

(e) news20, K = 10, SQRT

n

50 60 80 100

M
V

R

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
EQSZ

EQWD

GMM

KM

SQRT

CBRT

WTMN

(f) news20, K = 10

Figure 7.4: Equal Stratified Sampling

to a further reduction in variance of estimated accuracy by upto 18% in certain cases. The range
of reduction is 5− 18%. This implies that for a given n, OPT-A2 will lead to a more precise
estimation of true accuracy. Moreover, we observe that setting nini is no more critical; nini = 5
works as good as nini = 10. Even more convenient is the fact that nstep does not affect MVR in
any major way which removes the role of any hyperparameter for OPT-A2. Hence, one can set nini
to any small value such as 5 and any reasonable value of nstep such as 10 or 20 works fine. As we
mentioned before for rcv1 equal allocation OPT-A1 leads to only a small improvement in results
over equal allocation. Using OPT-A2 on rcv1 dataset leads to a further small improvements in
results over OPT-A1, but not substantial. This again points toward existence of data specific
bound.

7.4.4 Dependence on True Accuracy

It is expected that the value of true accuracy would have some effect on the MVR, which measures
how well stratified sampling is doing compared to random sampling. Mainly, we would like to
understand when can we expect MVR values to be low. In this section, we want to empirically

125

n

50 60 100

M
V

R

0.35

0.4

0.45

0.5

0.55

0.6

2

3

4

5

6

7

8

9

10

(a) rcv1,Equal

n

50 60 80

M
V
R

0.65

0.7

0.75

0.8

0.85

0.9

0.95
2

3

4

5

6

7

8

9

10

(b) news20,Equal

Figure 7.5: MVR Variation With K for Equal

n

100 200 300 400 500 600 700 800 900 1000

M
A

E
 (

%
)

0.5

1

1.5

2

2.5

3

Random Sampling

Optimal (OPTA1) Sampling

(a) epsilon,EQSZ,K = 6

n

110 130 150 180
M
V
R

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2 EQSZ

EQWD

GMM

KM

SQRT

CBRT

WTMN

(b) epsilon,K = 6

n

100 200 300 400 500 600 700 800 900 1000

M
A

E
 (

%
)

0.5

1

1.5

2

2.5

3
Random Sampling

Optimal (OPTA1) Sampling

(c) news20,K = 6,SQRT

n

100 120 140 180

M
V
R

0.5

0.55

0.6

0.65

0.7

0.75

EQSZ

EQWD

GMM

KM

SQRT

CBRT

WTMN

(d) news20,K = 6

Figure 7.6: OPT-A1 Optimal Stratified Sampling

study the effect of actual value of true accuracy on the proposed accuracy estimation process.
For all three datasets, the accuracy of logistic regression and linear SVM are close and hence any
reasonable analysis cannot be made by comparing performance for these two types of classifiers.

We try to study this effect on the epsilon dataset by training 3 different classifiers (SVMs) with
varying accuracies. The true accuracies of the classifiers are 88%(H), 77%(M) and 67%(L). The
classifier accuracy has been reduced by reducing the amount of training data used. Obviously, the
test data D on which these accuracies have been computed is same for all 3 classifiers. Now we
try to estimate these accuracies for the 3 classifiers by sampling from D and we observe the MVR
values for different n. Figure 7.9 show the results for three cases using OPT-A2 with nini = 5 and
nstep = 10. We observe that MVR follows an inverse trend with classifier accuracy. Thus, the
better the classifier the more effective stratified sampling is in reducing the variance of accuracy
estimate. Similar trend for OPT-A1 also exist.

126

n

150 180 200 250 300 350 400 500 600

M
V
R

0.5

0.55

0.6

0.65

0.7

0.75

5

10

20

(a) epsilon, EQSZ, K = 6

n

150 180 200 250 300 350 400 500 600

M
V
R

0.5

0.55

0.6

0.65

0.7

0.75

5

10

20

(b) news20, SQRT, K = 6

Figure 7.7: OPT-A1 Dependence on nini

n

150 180 200 250 300 350 400 500 600

M
V
R

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
5-A1

5-10

5-20

5-30

10-A1

10-10

10-20

10-30

(a) epsilon,EQSZ,K = 6

n

150 180 200 250 300 350 400 500 600

M
V
R

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
5-A1

5-10

5-20

5-30

10-A1

10-10

10-20

10-30

(b) news20,SQRT,K = 6

Figure 7.8: OPTA1 vs OPTA2, nini and nstep

7.5 Summary and Future Directions

In this chapter, we looked into efficient methods for estimating classifier performance on large test
set under limited labeling budget. For the stratification methods we observed that algorithms
such as SQRT and CBRT which are well established in stratified sampling literature works well for
accuracy estimation as well. However, we also introduced clustering methods such as K-Means for
stratification and found that these methods can also be employed for stratification and in several
cases work better than all other methods. For the allocation methods clearly optimal allocation
results in the lowest variance estimator. However, implementation of optimal allocation is not
straightforward and is best done through OPT-A2 method.

Although, stratified sampling provides an efficient method for estimation of classifier accuracy
there still remains a large body of open problems in this area. We observed that as classifier ac-
curacy goes down the gain in preciseness using stratified sampling compared to random sampling
estimator goes down. If the classifier accuracy is very low stratified estimation may be not be

127

n

100 120 150 180 200 250 300 350 400 500 600

M
VR

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

L

M

H

Figure 7.9: epsilon,EQSZ,K = 6,OPTA2

significantly better than random sampling estimator. This problem needs to be addressed. One
way to address this estimation is to use the feature space of instances in the stratification process.
Currently, we employed only classifier outputs for estimation. A stratification method employing
both feature space and classifier output can give a relatively more homogeneous strata. This
would result in lower variance of stratified estimator.

The stratified sampling estimator also needs to be extended for measuring performance mea-
sures in other practical cases. Extending it to multi-class accuracy estimation is an important
task. Unlike the current case multi-class classification accuracy cannot be directly described by a
binary measure. Hence, the overall approach needs to to properly adopted. Moreover, in a large
number of cases we wish to measure other forms of performance metrics such as F1-score or av-
erage precision. It remains to be seen how these metrics can be precisely estimated under limited
labeling budget scenario. We believe that future works will pay more attention to evaluation of
systems for all machine learning tasks including sound event recognition.

128

Chapter 8

Some Applications

There is science and its applications, which are related to one another as the fruit
is related to the tree that has borne it.

-Louis Pasteur

This chapter describes some applications oriented works done during the course of this dis-
sertation. They deal with automated understanding of sounds, however, under specific contexts.
We first show that knowledge of sounds can be used for the purposes of geotagging multimedia
content. We then look into a system for query by example retrieval of sounds and then finally we
will look into development of a large scale system which aims to learn about sounds in a never
ending fashion.

8.1 Geotagging in Multimedia

Extracting information from multimedia recordings has received lot of attention due to the grow-
ing multimedia content on the web. A particularly interesting problem is the extraction of
geo-locations or information relevant to geographical locations. This process of providing geo-
graphical identity information is usually termed as Geotagging [Luo et al., 2011] and is gaining
importance due its role in several applications. It is useful not only in location based services and
recommender systems [Bao et al., 2012] [Bao et al., 2015][Majid et al., 2013], but also in general
cataloging, organization, search and retrieval of multimedia content on the web. Location specific
information also allows a user to put his/her multimedia content into a social context, since it is
human nature to associate with geographical identity of any material. A nice survey on different
aspects of geotagging in multimedia can be found in [Choi et al., 2015, Luo et al., 2011].

Although, there are applications which allows users to add geographical information in their
photos and videos, a larger portion of multimedia content on the web is without any geographical
identity. In these cases geotags needs to be inferred from the multimedia content and the associ-
ated metadata. This problem of geotagging or location identification also features as the Placing
Tasks in MediaEval [MediaEval, 2015] tasks. The goal of Placing Tasks [Choi et al., 2014] in
MediaEval is to develop systems which can predict places in videos based on different modalities
of multimedia such as images, audio, text etc. An important aspect of location prediction systems
is the granularity at which location needs to be predicted. The Placing Task recognizes a wide

129

range of location hierarchy, starting from neighborhoods and going upto continents. In this work
we are particularly interested in obtaining city-level geographical tags which is clearly one of the
most important level of location specification for any data. City-level information is widely used
and well suited to location based services and recommender systems.

Most of the current works on geotagging focus on using visual/image component of multimedia
and the associated text in the multimedia ([Trevisiol et al., 2013] [Luo et al., 2011][Song et al.,
2012][Kelm et al., 2013] to cite a few). The audio component has largely been ignored and there
is little work on predicting locations based on audio content of the multimedia. However, authors
in [Choi et al., 2013] argue that there are cases where audio content might be extremely helpful in
identifying location. For example, speech based cues can aid in recognizing location. Moreover,
factors such as urban soundscapes and locations acoustic environment can also help in location
identification. Very few works have looked into audio based location identification in multimedia
recordings [Choi et al., 2015, Lei et al., 2012, Sevillano et al., 2012]. The approaches proposed
in these works have been simplistic relying mainly on basic low level acoustic features such as
Mel-Cepstra Coefficient (MFCC), Gammatone filter features directly for classification purposes.
In other case audio-clip level features such GMM - Supervectors or Bag Of Audio Words (BoAW)
histograms are first obtained and then classifiers are trained on these features [Choi et al., 2015].

We show that geotagging using only audio component of multimedia can be done by capturing
the semantic content in the audio. Our primary assertion is that the semantic content of an audio
recording in terms of different acoustic events can help in predicting locations. We argue that
soundtracks of different cities are composed of a set of acoustic events. Hence, the composition
of audio in terms of these acoustic events can be used to train machine learning algorithms for
geotagging purposes. We start with a set of base acoustic events or sound classes and then apply
methods based on matrix factorization to find the composition of soundtracks in terms of these
acoustic events. Once the weights corresponding to each base sound class have been obtained,
higher level features are built using these weights. Sound class specific kernels are fused to finally
train Support Vector Machines for predicting location identification of the recording.

8.1.1 Audio Semantic Content based Geotagging

Audio based geotagging in multimedia can be performed by exploiting audio content in several
ways. One can possibly try to use automatic speech recognition (ASR) to exploit the speech
information present in audio. For example, speech might contain words or sentences which
uniquely identifies a place, I am near Eiffel Tower clearly gives away the location as Paris, with
high probability, irrespective of presence or absence of any other cues. Other details such as
language used, mention of landmarks etc. in speech can also help in audio based geotagging.

In this work we take a more generic approach where we try to capture semantic content of
audio through occurrence of different meaningful sound events and scenes in the recording. We
argue that it should be possible to train machines to capture identity of a location by capturing
the composition of audio recordings in terms of human recognizable sound events. This idea can
be related to and is in fact backed by urban soundscapes works [Brown et al., 2011] [Payne et al.,
2009]. Based on this idea of location identification through semantic content of audio, we try to
answer two important questions. First, how to mathematically capture the composition of audio
recordings and Second, how to use the information about semantic content of the recording for
training classifiers which can predict identity of location. We provide our answers for each of
these questions one by one.

Let E = {E1, E2, ..EL} be the set of base acoustic events or sound classes whose composition

130

is to be captured in an audio recording. Let us assume that each of these sound classes can be
characterized by a basis matrix Ml. For a given sound class El the column vectors of its basis
matrix Ml essentially spans the space of sound class El. Mathematically, this span is in space
of some acoustic feature (e.g MFCC) used to characterize audio recordings and over which the
basis matrices have been learned. How we obtain Ml is discussed later. Any given soundtrack or
audio recording is then decomposed with respect to the sound class El as

X ≈MlW
T
l (8.1)

where X is a d×n dimensional representation of the audio recording using acoustic features such
as MFCC. For MFCCs, this implies each column of X is d dimensional mel-frequency cepstral
coefficients and n is the total number of frames in the audio recording. The sound basis matrices
Ml are d × k dimensional where k represents the number of basis vectors in Ml. In principle k
can vary with each sound class, however, for sake of convenience we assume it is same for all El,
for l = 1 to L.

Equation 1 defines the relationship between the soundtrack and its composition in terms of
sound classes. The weight matrix Wl captures how the sound class El is present in the recording.
It is representative of the distribution of sound class El through out the duration of the recording.
Hencer, obtaining Wl for each l provides us information about the structural composition of the
audio in terms of sound classes in E. These Wl can then be used for differentiating locations.
Thus, the first problem we need to address is to learn Ml for each El and then using it to compute
Wl for any given recording.

8.1.2 Learning Ml and Wl using semi-NMF

Let us assume that for a given sound class El we have a collection of Nl audio recordings belonging
to class El only. We parametrize each of these recordings through some acoustic features. In this
work we use MFCC features augmented by delta and acceleration coefficients (denoted by MFCA)
as basic acoustic features. These acoustic features are represented by d× ni dimensional matrix
Xi
El

for the ith recording. d is dimensionality of acoustic features and each column represents
acoustic features for a frame. The basic features of all recordings are collected into one single
matrix XEl

= [Xi
El
, ..XN

El
], to get a large collective sample of acoustic features for sound class El.

Clearly, XEl
has d rows and let T be the number of columns in this matrix.

To obtain the basis matrix Ml for El we employ matrix factorization techniques. More specif-
ically, we use Non-Negative matrix factorization (NMF) like method proposed in [Ding et al.,
2010]. [Ding et al., 2010] proposed two matrix factorization methods named semi-NMF and
convex-NMF which are like NMF but do not require the matrix data to be non-negative. This
is important in our case, since employing classical NMF [Lee and Seung, 2001] algorithms would
require our basic acoustic feature to be non-negative. This can be highly restrictive given the
challenging task at hand. Even though we employ MFCCs as acoustic features, our proposed
general framework based on semi-NMF can be used with other features as well. Moreover, semi-
NMF offers other interesting properties such as its interpretation in terms of K-means clustering.
One of our higher level features is based on this interpretation of semi-NMF. convex-NMF did
not yield desirable results and hence we do not discuss it in this paper.

semi-NMF considers factorization of a matrix, XEl
as XEl

≈MlW
T . For factorization number

of basis vectors k in Ml is fixed to a value less than min(d, T). semi-NMF does not impose any
restriction on Ml, that is its element can have any sign. The weight matrix W on the other hand
is restricted to be non-negative. The objective is to minimize ||XEl

−MlW
T ||2. Assuming that

131

Ml and W have been initialized, Ml and Wl are updated iteratively in the following way. In each
step of iteration,

•Fix W, update Ml as, Ml = XEl
W (W TW)−1 (8.2)

•Fix Ml, update W, Wrs = Wrs

√
(XT

El
Ml)

+
rs+[W (MT

l Ml)−]rs

(XT
El
Ml)
−
rs+[W (MT

l Ml)+]rs
(8.3)

The process is iterated till error drops below certain tolerance. The + and − sign represents
positive and negative parts of a matrix obtained as Z+

rs = (|Zrs|+Zrs)/2 and Z−rs = (|Zrs|−Zrs)/2.
Theoretical guarantees on convergence of semi-NMF and other interesting properties such as
invariance with respect to scaling can be found in original paper. One interesting aspect of semi-
NMF described by authors is its analysis in terms of K-means clustering algorithm. The objective
function ||X −MW T ||2 can be related to K-Means objective function with Ml representing the
k cluster centers. Hence, the basis matrix Ml also represents centers of clusters. We exploit this
interpretation in the next phase of our approach. The initialization of Ml and Wl is done as per
the procedure described in [Ding et al., 2010].

Once Ml have been learned for each El, we can easily obtain Wl for any given audio recording
X by fixing Ml and then applying Eq 8.3 for X for several iterations. For a given X, Wl contains
information about El in X. With K-Means interpretation of semi-NMF, the non-negative weight
matrix Wl can be interpreted as containing soft assignment posteriors to each cluster for all frames
in X.

8.1.3 Discriminative Learning using Wl

We treat the problem of location prediction as a retrieval problem where we want to retrieve
most relevant recordings belonging to a certain location (city). Put more formally, we train
binary classifiers for each location to retrieve the most relevant recordings belonging to the con-
cerned location. Let us assume that we are concerned with a particular city C and the set
S = {si, i = 1 to N} is the set of available training audio recordings. The labels of the recordings
are represented by yi ∈ {−1, 1} with yi = 1 if si belongs to C, otherwise yi = −1. Xi (d×ni) de-
notes the MFCA representation of si. For each Xi weight composition matrices W l

i are obtained
with respect to all sound events El in E. W l

i captures distribution of sound event El in Xi and
we propose 2 histogram based representations to characterize this distribution.

Direct characterization of Wl as posterior

As we mentioned before semi-NMF can be interpreted in terms of K-means clustering. Based
on this interpretation we proposea soft count histogram features using Wl. For a given El, the
learned basis matrix Ml can be interpreted as matrix containing cluster centers. The weight
matrix W l

i (ni×k) obtained for Xi using Ml can then be interpreted as posterior probabilities for
each frame in Xi with respect to cluster centers in Ml. Hence, we first normalize each row of W l

i

to sum to 1, to convert them into probability space. Then, we obtain k dimensional histogram
representation for Xi corresponding to Ml as

~hli =
1

ni

ni∑
t=1

~wt ; ~wt = tth row of W l
i (8.4)

132

This is done for all Ml and hence for each training recording we obtain a total of L, k dimensional
histograms represented by ~hli.

GMM based characterization of Wl

We also propose another way of capturing distribution in Wl where we actually fit a mixture
model to it. For a given sound class El, we first collect W l

i for all Xi in training data. We then
train a Gaussian Mixture Model Gl on the accumulated weight vectors. Let this GMM be Gl =
{λg, N(~µg,Σg), g = 1 to Gl}, where λlg, ~µ

l
g and Σl

g are the mixture weight, mean and covariance

parameters of the gth Gaussian in Gl. Once Gl has been obtained, for any W l
i we compute

probabilistic posterior assignment of weight vectors wt in W l
i according to Eq 8.5 (Pr(g|~wt)). ~wt

are again the rows in W l
i . These soft-assignments are added over all t to obtain the total mass

of weight vectors belonging to the gth Gaussian (P (g)li, Eq 8.5). Normalization by ni is done to
remove the effect of the duration of recordings.

Pr(g|~wt) =
λlgN(~wt; ~µ

l
g,Σ

l
g)

G∑
p=1

λlpN(~wt

(8.5)

The final representation for W l
i is ~vli = [P (1)li, ...P (Gl)li]

T . ~vli is a Gl-dimensional feature
representation for a given recording Xi with respect to El. The whole process is done for all El
to obtain L different soft assignment histograms for a given Xi.

8.1.4 Kernel Fusion for Semantic Content based Prediction

~hli or ~vli features captures acoustic events information for any Xi. We then use kernel fusion
methods in Support Vector Machine (SVM) to finally train classifiers for geotagging purposes.
We explain the method here in terms of ~hli, for ~vli the steps followed are same.

For each l, we obtain separate kernels representation Kl using ~hli for all Xi. Since exponential
χ2 kernel SVM are known to work well with histogram representations [Zhang et al., 2007] [Cao
et al., 2011], we use kernels of the form Kl(~h

l
i,
~hlj) = exp(−D(~hli,

~hlj)/γ) where D(~hli,
~hlj)) is χ2

distance between ~hli and ~hlj . γ is set as the average of all pair wise distance. Once we have all
Kl, we use two simple kernel fusion methods;

� Average kernel fusion - The final kernel representation is given by, Kh
S = 1

L

∑L
l=1Kl(; , ;)

� Product kernel fusion - In this case the final kernel representation is given by, Kh
P =

1
L

∏L
i=1Kl(:, :).

Finally, Kh
S or Kh

P is used to train SVMs for prediction.

8.1.5 Experiments and Results

As stated before, our goal is to perform city - level geotagging in multimedia. Hence, we evaluate
our proposed method on the dataset used in [Lei et al., 2012] which provides city level tags for
flickr videos. The dataset contains contains a total of 1079 Flickr videos with 540 videos in the
training set and 539 in the testing set. We work with only audio of each video and we will
alternatively refer to these videos as audio recordings. The maximum duration of recordings is

133

90 seconds. The videos of the recording belong to 18 different cities with several cities having
very few examples in training as well as testing set such as just 3 for Bankok or 5 for Beijing.
We selected 10 cities for evaluation for which training as well as test set contains at least 11
examples. These 10 cities are Berlin (B), Chicago (C), London (L), Los Angeles (LA), Paris
(P), Rio (R), San Francisco (SF), Seoul(SE), Sydney (SY) and Tokyo (T). As stated before the
basic acoustic feature used are MFCC features augmented by delta and acceleration coefficients.
20 dimensional MFCCs are extracted for each audio recording over a window of 30 ms with 50%
overlap. Hence, basic acoustic features for audio recordings are 60 dimensional and referred to as
MFCA features.

We compare our proposed method with two methods, one based on GMM based bag of audio
words (BoAW) and other based on GMM-supervectors. These are clip level feature representation
built over MFCA acoustic features for each recording. The first step in this method is to train a
background GMM Gbs with Gb components over MFCA features where each Gaussian represents
an audio word. Then for each audio recording clip level histogram features are obtained using
the GMM posteriors for each frame in the clip. The computation is similar to Eq 8.5; except that
the process is done over MFCA features. These clip level representation are soft count bag of
audio words representation. GMM-supervectors are obtained by adapating means of background
GMM Gbs for a given using maximum a posteriori (MAP) adaptation [Campbell et al., 2006].
We will use ~b to denote these Gb dimensional bag of audio words features and ~s to denote the
Gb × 60 dimensional GMM - supervectors. Exponential χ2 kernel SVMs are used with ~b features
and linear SVMs are used with GMM - supervectors features. Exponential χ2 kernels are usually
represented as K(x, y) = exp−γD(x,y), where D(x, y) is χ2 distance between vetors x and y. Both
of these kernels are known to work best for the corresponding features. All parameters such as γ
and the slack parameter C in SVMs are selected by cross validation over the training set.

For our proposed method we need a set of sound classes E. Studies on Urban soundscapes
have tried to categorize the urban acoustic environments [Brown et al., 2011] [Payne et al., 2009]
[Schafer, 1993]. [Salamon et al., 2014] came up with a refined taxonomy of urban sounds and
also created a dataset, UrbanSounds8k, for urban sound events. This dataset contains 8732 audio
recordings spread over 10 different sound events from urban sound taxonomy. These sound events
are car horn, children playing, dog barking, air conditioner noise, drilling, engine idling, gun shot,
jackhammer, siren and street music. We use these 10 sound classes as our set E and then obtain
the basis matrices Ml for each El using the examples of these sound events provided in the
UrbanSounds8k dataset.

The number of basis vectors for all Ml is same and fixed to either 20 or 40. We present results
for both cases. Finally, in the classifier training stage; SVMs are trained using the fused kernel
Kh
S (or Kh

P , or Kv
S , or Kv

P) as described in Section 8.1.4. Here the slack parameter C in SVM
formulation is set by performing 5 fold cross validation over the training set.

We formulate the geotagging problem as retrieval problem where the goal is to retrieve most
relevant audios for a city. We use well known Average Precision (AP) as metric to measure
performance for each city and Mean Average Precision (MAP) over all cities as the overall metric.
Due to space constraints we are not able to show AP results in every case and will only present
overall metric MAP.

Table 8.1 shows MAP results for BoAW and Supervector based methods (top 3 rows) and
our proposed method (bottom 3 rows) using ~hl features described in Section 8.1.3. For baseline
method we experimented with 4 different component size Gb for GMM Gbs. k represents the
number of basis vectors in each Ml. Kh

S represents the average kernel fusion and Kh
P product

134

Table 8.1: MAP for different cases (~b, ~s and ~hl)

Gb → 32 64 128 256

MAP (~b) → 0.362 0.429 0.461 0.478

MAP (~s) → 0.446 0.491 0.471 0.437

Kernel → Avg Ker. (Kh
S) Prod. Ker (Kh

P)

k → 20 40 20 40

MAP → 0.454 0.500 0.520 0.563

kernel fusion. First, we observe that our proposed method outperforms these state of art methods
by a significant margin. For BoAW, Gb = 256 gives highest MAP of 0.478 but MAP saturates
with increasing Gb and hence, any significant improvement in MAP by further increasing Gb

is not expected. For supervectors Gb = 64 gives best result and MAP decreases on further
increasing Gb. Our proposed method with k = 40 and product kernel fusion gives 0.563 MAP,
an absolute improvement of 8.5% and 7.2% when compared to BoAW and supervectors based
methods respectively. MAP in other cases for our proposed method are also in general better
than best MAP using state of art methods. We also note that for ~hl features, product kernel
fusion of different sound class kernels performs better than average kernel fusion. Also, for ~hl,
k = 40 is better than k = 20.

Table 8.2 shows results for our ~vl features in Section 8.1.3 which uses GMM based characteri-
zation of composition matrices Wl. We experimented with 4 different values of GMM component
size Gl. Once again we observe that overall this framework works gives superior performance.
Once again MAP of 0.527 with ~vl is over 3.6% higher in absolute terms when comapred to best
MAP with supervectors.

This shows that the composition matrices Wl are actually capturing semantic information
from the audio and these semantic information when combined helps in location identification. If
we compare ~vl and ~hl methods then overall ~hl seems to give better results. This is worth noting
since it suggests that Wl on its own are extremely meaningful and sufficient. Another interesting
observation is that for ~vl average kernel fusion is better than product kernel fusion.

Figure 8.1 shows city wise results for all 4 methods methods. For each method the shown AP
correspond to the case which results in best MAP for that method. This implies GMM component
size in both BoAW and ~vl is 256 that is Gl = Gb = 256; for ~hl k = 40 and product kernel fusion;
for ~vl k = 20 and average kernel fusion. For supervector based method Gb = 64. For convenience,
city names have been denoted by indices used in the beginning paragraph of this section. Figure
8.1 also shows MAP values in the extreme right. One can observe from Figure 8.1 that cities
such as Rio (R), San Francisco (SF), Seoul (SE) are much easier to identify and all methods
give over 0.60 AP. On the other hand Sydney (SY) is a much harder to geotag comapred to other
cities. Once again our proposed method outperforms BoAW and supervector based methods for
all cities except for Berlin (B).
We presented methods for geotagging in multimedia using its audio content. We showed that
the semantic content of the audio captured in terms of different sound events which occur in
the environment, can be used for location identification purposes. It is expected that larger the
number of sound classes in E, the more distinguishing elements we can expect to obtain and the
better it is for geotagging. Hence, it is desirable that any framework working under this idea
should be scalable in terms of number of sounds in E. In our proposed framework the process of
learning basis matrices Ml are independent of each other and can be easily parallelized. Similarly,

135

Table 8.2: MAP for different cases for ~vl

Avg Ker. (Kv
S) Prod. Ker (Kv

P)
Gl ↓ — k → 20 40 20 40

32 0.454 0.427 0.448 0.417

64 0.482 0.466 0.432 0.424

128 0.510 0.465 0.466 0.427

256 0.527 0.455 0.471 0.441

Cities

B C L LA P R SF SE SY T MAP

A
P

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 BoAW → exp χ
2 Ker.

Supvectors → Linear Ker.

Wl(~h
l) → Prod. Ker.

Wl +GMM (~vl) → Avg. Ker.

Figure 8.1: Average Precision for Cities (MAP in right extreme)

obtaining composition weight matrices W l
i can also be computed in parallel for each El and so do

the features ~hli (or ~vli) and kernel matrices. Hence, our proposed is completely scalable in terms
of number sound events in the set E. If required, one can also easily add any new sound class to
an existing system if required. Moreover, our proposed framework can be applied on any acoustic
feature.

Even with 10 sound events from urban sound taxonomy we obtained reasonably good per-
formance. Our framework outperformed supervector and bag of audio word based methods by a
considerable margin. Currently, we used simple kernel fusion methods to combine event specific
kernels. One can potentially use established methods such as multiple kernel learning at this step.
This might lead to further improvement in results. One can also look into other methods for ob-
taining basis matrices for sound events. A more comprehensive analysis on a larger dataset with
larger number of cities can through more light on the effectiveness of the method presented here.
However, this work does give sufficient evidence to show that sounds can be useful in geotagging
as well.

136

8.2 Query by Example Retrieval

Humans have an inherent ability to distinguish and recognize different sounds. Moreover, we
are also able to relate and match similar sounds. In fact, we have the capability to detect and
relate sound events or “acoustic objects” which we have never encountered before, based on how
that phenomenon stands out against the background [Kumar et al., 2014]. This ability plays a
crucial role in our interactions with the surroundings and it is also expected that machines have
this ability to relate the two audio recordings based on their semantic content. We address the
problem of query by example retrieval for audio: given an input audio recording we intend to
retrieve audio recordings which are semantically related to it.

Semantic similarity matching and retrieval based on it has received much attention for video
and images [Wang et al., 2016], [Ong et al., 2017] and [Qi et al., 2016]. However, in the broad
field of machine learning for audio, semantic similarity matching and retrieval based on audio has
received limited attention [Wold et al., 1996]. A major focus has been music information retrieval
[Casey et al., 2008], [Lew et al., 2006], [Foote, 1997] and semantic retrieval of audio using text
queries [Chechik et al., 2008], [Patil and Nemade, 2016]. Our focus here is on non-music and non-
speech content, sounds which we hear everyday in our daily life, since they play an important role
in defining the overall semantic content of an audio recording. Note that the problem of semantic
content matching is a bit different from the problem of audio event detection and classification.
Here detection and classification of sound events is not the primary goal, instead the idea is to
capture the semantic content of an audio. One method which has been explored considerably for
audios is the idea of fingerprinting.

Audio fingerprinting is an acoustic approach that provides the ability to derive a compact
representation which can be efficiently matched against other audio clips to compare their simi-
larity or dissimilarity [Ellis, 2009]. Audio fingerprinting has various applications like Broadcast
Monitoring[Haitsma and Kalker, 2002], Audio/Song Detection[Wang et al., 2003], Filtering Tech-
nology for File Sharing[Sherlock et al., 1994] and Automatic Music Library organization[Cano
et al., 2005].

We focus on developing an efficient content-based retrieval system that can retrieve audio
clips which contain similar sounds as the query audio clip. One can potentially think of applying
the conventional fingerprinting approach [Wang et al., 2003] for matching to find recordings with
similar audio content. However, fingerprinting is useful only in finding exact match. It has been
used for finding multiple videos of the same event [Cotton and Ellis, 2010]. In [Ogle and Ellis,
2007] it is used to find multiple occurrences of a sound event in a recording. But it cannot solve
the problem of retrieving all semantically similar files together. In fact even for finding repetitions
of the same sound, it does not work well if the sound event is unstructured [Ogle and Ellis, 2007].
The reason is that fingerprinting tries to capture local features specific to an audio recording. It
does not try to capture the broader features which might represent a semantically meaningful
class. For searching similar recordings based on the content, we need audio retrievals belonging
to the correct audio class and not just exact matches as in conventional fingerprinting. Hence,
we need representations which can encode class specific information. We try to achieve this by
using a Siamese Neural Network. Although the siamese network has been previously explored
for representations and content understanding in images and video [Ong et al., 2017, Wang and
Gupta, 2015], to the best of our knowledge this is the first work employing it in the context of
sound events.

Siamese neural networks incorporate methods that excel at detecting similar instances but fail
to offer robust solutions that may be applied to other types of problems like classification. In this

137

paper, we present a novel approach that uses a Siamese network to automatically acquire features
which enable the model to distinguish between clips containing distinct audio events and encodes
a given audio into a vector fingerprint. We show that the output feature vector has an inherent
property to capture semantic similarity between audio containing same events. Although the cost
of the learning algorithm itself may be considerable, this compressed representation is powerful
as we are able to not only learn them without imposing strong priors like in [Wang et al., 2003],
but also to retrieve semantically similar clips by using this feature space.

8.2.1 Siamese Network for Encoding

Figure 8.2: Siamese Network For Encoding

We give a neural network based approach to obtain representations or embeddings for audio
recordings such that semantically similar audios have similar embeddings. We learn these seman-
tic representations through Siamese Neural Networks. Fig 8.2 shows the framework. A Siamese
neural network actually consists of two twin networks. The Siamese network takes in two dif-
ferent inputs, one applied to each network, and is trained to learn the similarity between these
inputs. If the inputs are similar then it should predict 1 otherwise 0. The network is used to learn
representations for the audio recording, as shown in the figure. An audio query is also embedded
through the same network and its embedding is matched with embeddings of recordings in the
database to rank them in decreasing order of similarity. This ranking can be done through any
distance or similarity measure. Ee use cosine similarity and euclidean distance. Based on the
ranked list one can return the top K most similar audios.

The Siamese neural network is a class of neural network architectures that contains two or
more identical sub-networks, meaning that all sub-networks have the same configuration with
the same parameters. Siamese networks have previously been used in tasks involving similarity
or identifying relationships between two or more comparable things. Muller et al.[Mueller and
Thyagarajan, 2016] used a Siamese network for paraphrase scoring by giving a score to a pair
of input sentences. Bromley et al.[Bromley et al., 1994] used a Siamese network for the task
of signature verification. In the domain of audio, it has been incorporated for content-based
matching in music [Raffel and Ellis, 2015] and in speech to model speaker related information
[Chen and Salman, 2011, Zeghidour et al., 2016].

138

Figure 8.3: Architecture of the Subnetworks in the Siamese Network

Siamese networks offers several advantages. All subnetworks have similar weights which leads
to fewer training parameters thus requiring less training data and a lesser tendency to over
fit. Moreover, the outputs of each of the subnetworks are representation vectors with the same
semantics and this makes them much easier to compare with one other. These characteristics
makes them well suited for our task.

Contrastive loss function, shown in Eq 8.6, is used to train the network [Hadsell et al., 2006].

L(W,Y,X1, X2) = (Y)
1

2
(Dw)2 + (1− Y)

1

2
{max(0,m−Dw)}2 (8.6)

In Eq 8.6, Y = 1 if the inputs X1 and X2 to the networks are similar, otherwise Y = 0. The
distance between X1 and X2 is defined as the euclidean distance between the mapping from the
network function GW , DW (X1, X2) =‖ Gw(X1) − Gw(X2) ‖. m > 0 is the margin. The idea
behind this margin is that the dissimilar points contribute to the training loss only if the distance
between them, DW , is within the radius defined by margin value m. For the pairs of similar
inputs we always want reduce the distance between them.

The network tries to learn the parameters W such that inputs which are expected to be similar
are pulled together through GW and those which are different are pushed apart.

The architecture of the individual sub-networks in the Siamese network is shown in Fig 8.3.
The final layer of 128 neurons is also the output layer. Each sub-network is a feed-forward multi
layer perceptron (MLP) network. The input to the network are log-frequency spectrograms of
audio recordings. The frames in Logspec are concatenated to create one long extended vector.
The dimensionality of the inputs are 13509 (See 8.2.4 for details). The network consists of a total
of 3 layers after the input layer. The first layer consists of 512 neurons, the second layer 256
neurons and the last layer has 128 neurons. The last layer also serves as the output layer. The
activation function in all layers is ReLU (max(0, x)). A dropout of 0.3 is applied between all
three layers during training. We will refer to the network as NR

8.2.2 Representations and Retrieval

All audio clips in the audio database are represented through the 128 dimensional output from the
network NR. When a query audio clip is given, we first obtain its 128 dimensional representation

139

using NR. This representation is then matched to representations of all audios in the database
using a similarity or distance function. The clips in database are ranked according to the similarity
measure and then the top K clips are returned. In other ways, one can think of it as obtaining
K nearest neighbors in the database. Note that all operations are done on fixed length audios of
2 seconds, details are provided in further sections.

All audio clips in the database are represented by their 128 dimensional representations. At
the time of testing, we obtain the representation for the query audio clip using the network and
compute its similarity with representations of audios in the database. For computing similarity
between two representations we use either euclidean distance or cosine similarity.

8.2.3 Dataset and Experimental Setup

We consider the list of sound events from 3 databases, ESC-50[Piczak, 2015a], US8K[Salamon
et al., 2014] and TUT 2016 [Mesaros et al., 2016]. A total of 76 sound events are considered. It
includes wide range of sound events, animal sounds such as Dog Barking and Crow, non-speech
human sounds such as Clapping and Coughing, exterior sounds such as Siren, Engine, Airplane
to urban soundscape sounds such as Street Music, Jackhammer etc.

We work with audio recordings from YouTube to perform query by example retrieval. For
each of the 76 classes, we obtain 100 recordings from YouTube. To obtain relevant results we use
<SOUND NAME sound >(e.g <car horn sound >) as search query. From the returned list we
select 100 recordings based on their length and relevance for the query. Very short (<2 seconds)
and very long (>10 min) recordings are not considered.

The dataset is divided in the ratio of 70-10-20. 70 percent of the data per class is used for
training and the remaining 30 percent data is split 1:2 between validation and testing. Thus,
we take 70 samples per class for training, 10 for validation and the remaining 20 for testing,
given that we roughly have 100 files per audio class. Overall, we have around 5,000 audio files for
training, 760 files for validation and around 1500 files for testing. For our experiments, we operate
on 2 second clips from each of these recordings. Hence, our actual database for experiments are
fixed length 2 second audio clips in training as well as validation and test sets.

8.2.4 Siamese Network Training

The inputs to the Siamese network must be pairs of audio clips. We assign label 1 to the pairs of
clips from the same class and label 0 to the pairs from different classes. We consider two training
sets, balanced and unbalanced. The network trained on balanced set will be referred to as NB

R

and that trained on unbalanced as NU
R . In the balanced case, to create pairs with positive label

(Y = 1), we consider all possible pairs belonging to the same audio class. For pairs with negative
label (Y = 0), a clip belonging to a sound class is randomly paired with a clip from any other
sound class. Hence, we end up with equal number of positive and negative label pairs. In the
unbalanced case the positive label pairs are obtained in the same way. But for the negative label,
we pair a clip belonging to a sound class with all clips not belonging to that sound. Thus, we
have a non equal distribution of positive and negative labels.

We used the log spectrogram features, taking 1024 point FFT over a window size of 64ms and
an overlap of 32ms per window. Both the axis were converted to the log scale and 79 bins were
chosen for the frequency axis whereas 171 quantization bins were chosen for the time scale. We
then concatenate these 79 × 171 = 13509 features and use as an input to the Siamese Network.

140

Figure 8.4: Variation of MPK with different K, from K = 1 to K = 30

All parameters were tuned using the validation set. We train each model to 200 epochs and
optimize on the training and validation losses.

8.2.5 Evaluation and results

For any given query audio, we obtain a ranked list of audio clips present in the database which
contain similar audio events present in the query clip. We then compute 3 metrics for evaluation
which are defined below:

Average Precision

The average precision for a query is defined as mean of precisions at all positive hits.

AP =
1

mj

mj∑
i=1

Precisioni (8.7)

Precisioni measures the fraction of correct items among first i recommendations. This precision
is measured at every positive hit in the ranked list. mj refers to the number of positive items in
the database for the query. Average precision is simply the mean of these precision values. We
will be reporting the mean of average precision (MAP) over all queries.

Precision at 1

This metric measures the precision at the first positive hit only. The idea is to understand where
does the first positive item lie in the ranked list. Again the mean of Precision at 1 (MP 1) over
all queries are reported.

Precision of Top K retrieval

This metric measures the quality of retrieved items in the top K items in the ranked list. For
each query, we calculate the number of correct class instances in the top K files and then divide
that by K to get the precision of the correct class amongst the top K retrieved files and take
an average across all queries. Multiplying this score by K tells us the average number of correct

141

Measures NB
R NU

R

MAP 0.0241 0.0342

MP 1 0.314 0.436

MPK=25 0.099 0.177

Measures NB
R NU

R

MAP 0.0186 0.0133

MP 1 0.132 0.333

MPK=25 0.105 0.133

Table 8.3: Left: Performance using euclidean distance, Right: Performance using cosine similarity

Figure 8.5: Examples of content-based retrieval. Left: Clock Tick, Right: Brushing Teeth

class matches in the top K of the retrieved list. This measure tells us about the precision of the
correct class in the top K retrieved list. Once again the mean of this metric over all queries is
reported (MPK)

The variation of MPK with K is shown in Figure 8.4. We observe that this metric is maximum
around K=25 and hence we report the best possible performance from now on for K=25.

8.2.6 Results and Discussion

We first show performance with respect to queries. From table 8.3, we observe that the Euclidean
distance performance exceeds the Cosine similarity performance in the Mean Average Precision
measure. This may be due to the fact during siamese network training, euclidean distance is used
to measure the closeness between two points. Hence, the learned representations are inherently
designed to work better with euclidean distance.

We note that the overall MAP of the system is similar to what has been traditionally observed
throughout audio retrieval work [Buckley and Voorhees, 2004]. MP 1 value of around 0.3 (for NB

R)
indicates that the first positive hit on an average is achieved at rank 3. However, for a given
specific query it can be much better. We note that the MP 1 values are fairly high, implying that
the first positive hit can be easily obtained using the audio embeddings generated using Siamese
Network. Also, note that the network NU

R performs much better compared to NB
R . NU

R is trained
using a larger set of pairs of dissimilar audios and hence it is able learn more discriminitive
representations.

The most important metric for understanding performance of a retrieval system is MPK .
The values for MPK multiplied by K gives us the average number of correct class instances in
the top K for a query. A low value of this measure means that a low number of correct class
instances are obtained in the top K retrieved files. We are able to obtain fairly reasonable value

142

of MPK .

Fig8.5 gives visualization of a retrieval example. It shows two examples of queries and their
top 6 retrieved similar files. We observe that for the class ’clock tick sound’, the retrieval is from
classes ’clock tick sound’ and ’clock alarm sound’, which are both nearly similar audio events.
For the class ’brushing teeth sound’, the system performs well as their are no other similar audio
classes in the database and hence it retrieves 5 out of the 6 files correctly. Overall, it illustrates
that our system is capable of delivering content based retrieval of audio recordings.

We described a method for query by example retrieval of audio. Our focus was on audio recordings
containing sounds. Our results indicate that the siamese network representations can be used
to encode recordings for query by example retrieval. Retrieving audio recordings based on their
similarity is an important research topic and recently other works have also been proposed in this
area [Jansen et al., 2017].

8.3 Never Ending Learning of Sounds

The learning process in humans is a continuous process. We keep observing and interacting
with our surroundings and learning new things about it. Ideally, a machine with intelligence
is expected to do the same. It should continuously obtain data and gather information from
it. In short, the learning process should be continuous. This idea of continuous learning in a
never-ending fashion have been proposed in the past [Carlson et al., 2010, Chen et al., 2013a,
Mitchell et al., 2018]. [Carlson et al., 2010] is a never-ending language learning system which is
designed to perform two task continuously, (a) reading task - which mines the textual data on
the web to enhance the knowledge base (b) learning task which aims to improve the reading,
ensuring that the next time the reading task is done more accurately. This system called Never
Ending Language Learner (NELL) has a broad scope. It aims to learn a variety of knowledge by
continuously mining textual information from the web.

Closer to what we aim here, [Chen et al., 2013a] presented a never-ending learning system for
extracting visual knowledge. This system aimed to understand the semantic content of images on
the web and then use this understanding in creating a visual knowledge base. A similar system
is desirable for sounds as well. A system which can create a knowledge base about sounds by
continuously learning from the web data. We call this Never Ending Learning of Sounds (NELS).

The development of a full-fledged NELS system is beyond the scope of this dissertation.
However, an outline of a very early form of such a system is presented here. The goal of such
a system is to mine sound related knowledge and examples continuously. The fundamentals of
the acoustic intelligence presented in this thesis clearly have a role to play in NELS. As outlined
in Figure 1.1, acoustic intelligence in machines requires at least three essential components (a)
extracting sound related knowledge by from text (b) recognizing and detecting a large number
of sound events and (c) a learning system which links these two systems. A system like NELS
is expected to do all of these same 24/7, continuously trying to discover new sound concepts,
attempting to build a computational model for it by mining audio on the web and then finally
trying to infer some higher level semantic knowledge and commonsense relations about sounds.
We addressed the individual components in this dissertation, and the next steps would be to tie
up the components together. Moreover, we will also have to incorporate the never ending part
where the processes are continuously running and updating the knowledge base.

A very early form of the system can be seen on http://nels.cs.cmu.edu [Elizalde et al.,
2018]. In the current form, the system primarily consists of a front end (http://nels.cs.cmu.

143

http://nels.cs.cmu.edu
http://nels.cs.cmu.edu
http://nels.cs.cmu.edu
http://nels.cs.cmu.edu

edu) which shows information about the current state of the system. It shows the vocabulary of
sound events which the system can currently detect and examples of videos from YouTube where
the system has detected the sound events. We also provide users with several ways to query
the system. Users can search for a sound through a text query, and the system returns a set of
videos from YouTube where it has detected the presence of the queried sound event. Users can
also directly upload an audio recording, and the system can annotate the recording with sound
events. The same can be done for any YouTube video as well by providing the URL link of that
video to the system. The back end of the system primarily consists of crawling the YouTube for
sounds and then learning from the crawled videos. The recognition system has been seeded by
detectors built using various datasets such as Audioset, Urbansounds, and ESC-50. In the next
phase of NELS, the goal would be to add semi-supervised approaches which will allow the system
to learn from unlabeled audio data on the web. Moreover, the system also needs to continuously
improve itself as far as detection of sound events is concerned. To this end, human feedback
might be important to ascertain that the system is actually improving its performance [Badlani
et al., 2018]. The next phase would also involve linking the natural language understanding from
text with the detection process in audio/multimedia recordings. The two processes can not only
help each other but can also be useful in establishing commonsense relationships for sounds.

144

http://nels.cs.cmu.edu
http://nels.cs.cmu.edu
http://nels.cs.cmu.edu

Chapter 9

Conclusions and Future Works

What we call the beginning is often the end
And to make an end is to make a beginning.
The end is where we start from.

-T.S. Eliot

Even though weakly supervised learning has played a significant role in scaling audio event
detection, one can expect that semi-supervised learning (SSL) can take it further, SSL is designed
to exploit both labeled and unlabeled data [Belkin et al., 2006]. We begin the concluding chapter
of this dissertation by taking a quick peek at semi-supervised learning for sound events.

Semi-supervised learning is a well-studied problem. The primary idea in semi-supervised
classification is that if the instances of a class form a coherent group, then it might be possible to
use a large number of unlabeled instances along with a labeled collection of instances to obtain
a better decision function Zhu and Goldberg [2009]. Since unlabeled data can be obtained on a
very large scale, SSL provides an effective way of obtaining robust models without any additional
labeling costs. It has been successfully applied in image classification and segmentation problems,
natural language processing Fergus et al. [2009], Liang [2005], Zhu and Goldberg [2009]. For audio,
it has mostly been explored in the context of speech recognition Yu et al. [2010]. There have been
a few works in the context of sounds as well, such as [Elizalde et al., 2017, Han et al., 2016, Zhang
and Schuller, 2012]. We describe one of the most straightforward approaches for self-supervised
learning, called Self Training for sound event detection [Zhu and Goldberg, 2009].

9.1 Self Training for AED

Self Training is the simplest form of semi-supervised learning. The idea behind self-training is
that an algorithm with non-random performance can self-teach and improve its performance. The
process is fairly simple. First, a model is trained using the available labeled data as training pool.
This trained model is then used to predict on the unlabeled instances. Then a few instances from
the unlabeled data along with their predicted label are added to the training pool. The model is
then retrained and the process is repeated. The process of Self-Training is shown in Figure 9.1.

The simplicity of self-training makes it an ideal choice for any learning algorithm. One crucial
step in self-training process is the instance selection step. The easiest and the most common
way to select instances is by choosing those for which the current model predicts labels with

145

Figure 9.1: Self Training for SSL

high confidence. This is based on the intuition that the predicted labels with high confidences
instances are most likely to be correct and hence the predicted label is essentially the ground
truth label. However, this can lead to self-bias as the algorithm will repeatedly select instances
on which it is already doing well. Here, we introduce another method of instance selection. This
instance selection method is based on the idea of clarity index Huang et al. [2008] which has
previously been used in active learning.

9.1.1 Clarity Index Based Instance Selection

The idea of clarity index originates from active learning where the goal is to select instances for
expert labeling. However, we explored it for other problems as well such as classifier fusion and
instance ranking Kumar and Raj [2015a,b]. To understand clarity index, let us assume that the
training data is D = {(x1, y1), (x2, y2)..., (xn, yn)}. A classifier is trained on this training data
and let f be the decision function. Now consider an unlabeled test point xu. Clarity index is
defined in terms of two loss terms namely Relevance Loss and Irrelevance Loss. The Relevance
Loss (RL) and the Irrelevance Loss (IL) are defined as

RL(xu, f) =
1

|D0|
∑
xi∈D0

I(f(xi)− f(xu)) (9.1)

IL(xu, f) =
1

|D1|
∑
xi∈D1

I(f(xu)− f(xi)) (9.2)

D0 is the set of negative instances in training data and D1 is the set of positive instances in
D. | | represents the number of elements in the set. The relevance loss is expected to be low if
xu is relevant (positive) and irrelevance loss is expected to be low if xu is irrelevant (negative
instance). The difference of the two losses CI = IL−RL is expected to be high (close to 1) for
positive instances and low (close to -1) for negative instance. Overall, the clarity index helps us
rank unlabeled segments to choose instances for retraining.

Higher CI implies that Xu is more likely to be positive. An unlabeled point with very high
CI would have outscored a large number of training points and hence is expected to be positive.
Similarly, lower CI implies the instance is most likely negative. Based on this idea, we select and
add the instances to the training pool. Clarity Index based selection of instances factors in the
performance of the classifier on the training set itself. Hence, the clarity index based ranking of
unlabeled instances is expected to be more robust compared to that based on classifier output.

146

Table 9.1: Results (AP) for Self-Training

Events Baseline Prob-Sel CI-Sel

Air Conditioner 0.393 0.413 0.410

Car Horn 0.524 0.520 0.525

Children Playing 0.538 0.534 0.540

Dog Bark 0.762 0.760 0.760

Drilling 0.567 0.581 0.572

Engine Idling 0.538 0.561 0.548

Gunshot 0.678 0.685 0.693

Jackhammer 0.602 0.582 0.620

Siren 0.722 0.727 0.729

Street Music 0.460 0.467 0.460

MAP 0.578 0.583 0.589

9.1.2 Experiments and Results

We use Urbansounds8k Salamon et al. [2014] as the source of labeled data. It contains 8, 732
audio samples of up to 4 seconds in duration. The samples include urban sounds from 10 classes,
namely air conditioner, car horn, children playing, dog bark, drilling, engine idling, gunshot,
jackhammer, siren and street music. The data in this dataset comes pre-divided into ten folds. 9
folds are used for training, and the remaining fold is used for testing.

Unlabeled audio data is downloaded from Youtube. A total of 1000 videos are downloaded.
To ensure that unlabeled data contains some audio belonging to relevant event classes, the sound
event name is used as the search query on Youtube. However, no labeling is actually done and
this data is treated as unlabeled recordings. Top 100 videos belonging to each event class is
downloaded. All audio data is segmented into 3.5 second segments which is the average duration
of events in the Urbansounds8k dataset. The total number of audio segments turns out to be
around 34000.

~F features described previously (Section 3.6.1) are used to represent audio segments. A
binary classifier is trained for each class. Linear kernel SVM is used as the classifier. The
selection of instances for retraining is done using two approaches. First, based on the confidence
(probabilities) output of the classifier. The second using the clarity index described in the previous
section.

Table 9.1 shows the results using both selection methods after a few iterations of selection and
retraining. In Table 9.1 Prob-Sel represents classifier confidence (probability) based selection and
CI-Sel represents clarity index based selection. Average Precision (AP) for each event has been
used as the performance metric. For both methods, we can observe an improvement in MAP
over the baseline classifier. With CI based selection we are able to obtain around 2% relative
improvement in mean average precision. We expect that a larger dataset and a more exhaustive
set of experiments will reveal more about how self-training is suited for audio event detection.

The current sets of experiments are only a small illustration of supervised learning. A wide
variety of semi-supervised learning methods have been proposed over the years, and it remains to
be seen how automated understanding of sounds can be improved using semi-supervised methods.
Existing methods such as graph-based SSL, semi-supervised SVMs, EM-based SSL, Co-Training
or Multi-view learning Zhu and Goldberg [2009], to name a few, can be adopted for sound event

147

detection as well.

For audio event detection scalability of any SSL method becomes very important. Audio event
detection usually involves segmenting long audio recordings into short duration (1 second or so)
segments. The total number of segments or instances in the learning process can quickly scale up
to a large number even for a modest amount of training data, say 100 hours of audio. Under these
circumstances, it is important to consider the scalability of the employed SSL method. Hence,
investigating the suitability of different SSL methods for audio event detection by considering
both performance and scalability is an essential first step for applications of SSL in AED.

In the last few years, deep learning has been the dominant learning framework for a large
number of machine intelligence tasks, however, its success has primarily been driven through
labeled data. Efforts are ongoing to use unlabeled data in the deep learning methods. For
example, it was observed that greedy layer-wise pre-training of deep models is an effective way of
utilizing unlabeled data in deep learning models Erhan et al. [2010]. citeweston2012deep proposed
another way of exploiting unlabeled data for deep neural networks. They describe different ways of
adding a regularizer using the unlabeled data. More recently ladder networks have been proposed
for semi-supervised deep learning Rasmus et al. [2015]. Once again, development of such methods
for acoustic intelligence remains to be seen.

9.2 Conclusions and Future Works

This dissertation was aimed at developing the idea of acoustic intelligence in machines. For the
purposes of development of methods for acoustic intelligence in machines, we proposed that acous-
tic intelligence should consist of two important components. One involved creating a knowledge
of sounds including methods to mine sound names and discovering commonsense relations about
sounds. The other is about detecting and recognizing sound events on large scale. Ideally, the
two parts are expected to be linked and aid each other. In this dissertation, we looked at methods
for each of these individual components.

We developed methods for discovering sound names and relations by mining a large text
corpus. In the process, we introduced the idea of more generic Audible or Sonic phrases, which
are textual phrases which carry a notion of audibility in them. These audible phrases can be
sound names, or they can be longer sentences giving the idea of an acoustic phenomenon. We
described methods for natural language understanding of sounds; however, a lot still needs to be
done. At the end of chapter 2, we pointed out several immediate tasks which need to be explored
within this problem.

A significant portion of this dissertation has been devoted to sound event detection, primarily
addressing the problem of scalability. We introduced the idea of training audio event detects
using weakly labeled data, thereby throwing light on the problem of lack of labeled data. Weakly
labeled learning for sounds has shown to be the primary way to scale audio event detection,
although, a lot more still needs to be done. We showed that the label noise could adversely affect
the learning for weakly labeled data and future methods should explore ways to address this
problem. Learning from webly labeled recordings needs to be more carefully addressed. By webly
labeled, we imply weakly labeled data obtained from the web, where the weak labels have been
automatically obtained instead of using a manual labeler. The label noise is these situations are
expected to be high, and learning methods need to address it appropriately. We also looked into
methods to learn from weakly and strongly labeled data under a unified framework. It would
be interesting to explore more into this idea, as it has the potential to address the problems of

148

weakly labeled data (especially webly labeled).
Methods under the WEASL framework are similar to semi-supervised learning methods. How-

ever, the advantage of weakly labeled data over entirely unlabeled is considerably high. Weak
labels still provide supervision, and deep learning methods are easier to employ, compared to
completely unlabeled data. As we mentioned before, semi-supervised learning for sounds when
done successfully can have a high impact in scaling systems. From a learning perspective, an
interesting avenue worth exploring is semi-supervised learning with weakly labeled data. In this
case, only weakly labeled data is available along with unlabeled data.

A major focus of the future works on acoustic intelligence should be on the coupling or
integration of language and sound event detection. For example, natural language understanding
of sounds can be used for collecting weakly labeled data. They can be employed to filter the
noise in labels for webly labeled data. In fact, a multi-modal understanding of sounds is required.
Knowledge from textual or even other modes such as vision should be used incorporated for sound
event recognition and vice versa. Acoustic intelligence in machines has a long way to go. We
believe that the progress will be much faster in the coming years and this dissertation will play
an important role in exciting new methods yet to come.

149

Bibliography

Multimedia event detection. www.nist.gov/itl/iad/mig/med11.cfm.

Freesound website. https://freesound.org/.

Pascal large scale learning challenge, 2008. URL http://largescale.ml.tu-berlin.de.

Leila Abdoune and Mohamed Fezari. A sound database for health smart home. In Computer
Applications and Information Systems (WCCAIS), 2014 World Congress on, pages 1–5. IEEE,
2014.

R. B. Adams and Janata P. A comparison of neural circuits underlying auditory and visual object
categorization. Neuroimage, 16:361–377, 2002.

Claude Alain, Stephen R Arnott, et al. Selectively attending to auditory objects. Front. Biosci,
5:D202–D212, 2000.

Peter W Alberti. The anatomy and physiology of the ear and hearing. Occupational exposure to
noise: Evaluation, prevention, and control, pages 53–62, 2001.

Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. What is an object? In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 73–80. IEEE, 2010.

Ehsan Amid, Annamaria Mesaros, Kalle J Palomaki, Jorma Laaksonen, and Mikko Kurimo. Un-
supervised feature extraction for multimedia event detection and ranking using audio content.
In IEEE ICASSP, pages 5939–5943, 2014.

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro,
Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, et al. Deep speech 2: End-
to-end speech recognition in english and mandarin. arXiv preprint arXiv:1512.02595, 2015.

Dallas W Anderson, Leslie Kish, and Richard G Cornell. Implications of optimum and approxi-
mately optimum stratification.

Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector machines for
multiple-instance learning. Advances in neural information processing systems, 15:561–568,
2002.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
nick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2425–2433, 2015.

Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 609–617. IEEE, 2017.

Relja Arandjelović and Andrew Zisserman. Objects that sound. arXiv preprint arXiv:1712.06651,
2017.

150

www.nist.gov/itl/iad/mig/med11.cfm
https://freesound.org/
http://largescale.ml.tu-berlin.de

Barry Arons. A review of the cocktail party effect. Journal of the American Voice I/O Society,
12(7):35–50, 1992.

K Ashraf, B Elizalde, F Iandola, M Moskewicz, J Bernd, G Friedland, and K Keutzer. Audio-
based multimedia event detection with DNNs and sparse sampling. In Proc. of the 5th ACM
International Conference on Multimedia Retrieval, 2015a.

Khalid Ashraf, Benjamin Elizalde, Forrest Iandola, Matthew Moskewicz, Julia Bernd, Gerald
Friedland, and Kurt Keutzer. Audio-based multimedia event detection with dnns and sparse
sampling. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval,
ICMR ’15, pages 611–614. ACM, 2015b.

Pradeep K Atrey, Namunu C Maddage, and Mohan S Kankanhalli. Audio based event detection
for multimedia surveillance. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006
Proceedings. 2006 IEEE International Conference on, volume 5, pages V–V. IEEE, 2006.

Mohamed Ayari, Jonathan Delhumeau, Matthijs Douze, Hervé Jégou, Danila Potapov, Jérôme
Revaud, Cordelia Schmid, Jiangbo Yuan, et al. INRIA@ TRECVID’2011: Copy detection &
multimedia event detection. In TRECVID, 2011.

Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Soundnet: Learning sound representations
from unlabeled video. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages 892–900. 2016.

Yusuf Aytar, Carl Vondrick, and Antonio Torralba. See, hear, and read: Deep aligned represen-
tations. arXiv preprint arXiv:1706.00932, 2017.

Rohan Badlani, Ankit Shah, Benjamin Elizalde, Anurag Kumar, and Bhiksha Raj. Framework
for evaluation of sound event detection in web videos. Acoustics, Speech and Signal Processing
(ICASSP), 2018 IEEE International Conference on, 2018.

Michele Banko and Eric Brill. Scaling to very very large corpora for natural language disambigua-
tion. In Proceedings of the 39th annual meeting on association for computational linguistics,
pages 26–33. Association for Computational Linguistics, 2001.

Jie Bao, Yu Zheng, and Mohamed F Mokbel. Location-based and preference-aware recommen-
dation using sparse geo-social networking data. In Proceedings of the 20th International Con-
ference on Advances in Geographic Information Systems, pages 199–208. ACM, 2012.

Jie Bao, Yu Zheng, David Wilkie, and Mohamed Mokbel. Recommendations in location-based
social networks: a survey. GeoInformatica, 19(3):525–565, 2015.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors. In ACL (1), pages
238–247, 2014.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of machine learning
research, 7(Nov):2399–2434, 2006.

Kristin Bennett, Ayhan Demiriz, et al. Semi-supervised support vector machines. Advances in
Neural Information processing systems, pages 368–374, 1999.

Paul N Bennett and Vitor R Carvalho. Online stratified sampling: evaluating classifiers at web-
scale. In Proceedings of the 19th ACM international conference on Information and knowledge
management, pages 1581–1584. ACM, 2010.

151

Frédéric Bimbot and et al. A tutorial on text-independent speaker verification. EURASIP journal
on applied signal processing, 2004:430–451, 2004.

A. S. Bregman. Auditory Scene Analysis. MIT Press, 1990.

Forrest Briggs, Balaji Lakshminarayanan, Lawrence Neal, Xiaoli Z Fern, Raviv Raich, Sarah JK
Hadley, Adam S Hadley, and Matthew G Betts. Acoustic classification of multiple simultaneous
bird species: A multi-instance multi-label approach. The Journal of the Acoustical Society of
America, 131(6):4640–4650, 2012.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature
verification using a” siamese” time delay neural network. In Advances in Neural Information
Processing Systems, pages 737–744, 1994.

AL Brown, Jian Kang, and Truls Gjestland. Towards standardization in soundscape preference
assessment. Applied Acoustics, 72(6):387–392, 2011.

Chris Buckley and Ellen M Voorhees. Retrieval evaluation with incomplete information. In Pro-
ceedings of the 27th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 25–32. ACM, 2004.

Susanne Burger, Qin Jin, Peter F Schulam, and Florian Metze. Noisemes: Manual annotation of
environmental noise in audio streams. 2012.

Emre Cakir, Toni Heittola, Heikki Huttunen, and Tuomas Virtanen. Polyphonic sound event
detection using multi label deep neural networks. In 2015 international joint conference on
neural networks (IJCNN), pages 1–7. IEEE, 2015.

William M Campbell, Douglas E Sturim, and Douglas A Reynolds. Support vector machines
using gmm supervectors for speaker verification. IEEE signal processing letters, 13(5):308–311,
2006.

Pedro Cano, Markus Koppenberger, and Nicolas Wack. Content-based music audio recommen-
dation. In Proceedings of the 13th annual ACM international conference on Multimedia, pages
211–212. ACM, 2005.

Liangliang Cao, Shih-Fu Chang, Noel Codella, Courtenay Cotton, Dan Ellis, Leiguang Gong,
Matthew Hill, Gang Hua, John Kender, Michele Merler, et al. Ibm research and columbia
university trecvid-2011 multimedia event detection (med) system. 2011.

José Carles, Fernando Bernáldez, and José de Lucio. Audio-visual interactions and soundscape
preferences. Landscape research, 17(2):52–56, 1992.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka Jr, and
Tom M Mitchell. Toward an architecture for never-ending language learning. In AAAI, vol-
ume 5, page 3, 2010.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. Content-based music
information retrieval: Current directions and future challenges. Proceedings of the IEEE, 96
(4):668–696, April 2008.

Sourish Chaudhuri, Mark Harvilla, and Bhiksha Raj. Unsupervised learning of acoustic unit
descriptors for audio content representation and classification. In INTERSPEECH, 2011.

Gal Chechik, Eugene Ie, Martin Rehn, Samy Bengio, and Dick Lyon. Large-scale content-based
audio retrieval from text queries. In Proceedings of the 1st ACM international conference on

152

Multimedia information retrieval, pages 105–112. ACM, 2008.

Michael Cheffena. Fall detection using smartphone audio features. IEEE journal of biomedical
and health informatics, 20(4):1073–1080, 2016.

Ke Chen and Ahmad Salman. Extracting speaker-specific information with a regularized siamese
deep network. In Advances in Neural Information Processing Systems, pages 298–306, 2011.

Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. Neil: Extracting visual knowledge from
web data. In Proceedings of the IEEE International Conference on Computer Vision, pages
1409–1416, 2013a.

Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. NEIL: Extracting Visual Knowledge
from Web Data. In International Conference on Computer Vision (ICCV), 2013b. http:

//www.neil-kb.com/.

Yixin Chen, Jinbo Bi, and James Ze Wang. Miles: Multiple-instance learning via embedded
instance selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12):
1931–1947, 2006.

Pak-Ming Cheung and James T Kwok. A regularization framework for multiple-instance learning.
In Proceedings of the 23rd international conference on Machine learning, pages 193–200. ACM,
2006.

Michel Chion. Guide to sound objects. pierre schaeffer and musical research. Trans. John Dack
and Christine North), http://www. ears. dmu. ac. uk, 1983.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

J Choi, B Thomee, G Friedland, L Cao, K Ni, D Borth, B Elizalde, L Gottlieb, C Carrano,
R Pearce, et al. The placing task: A large-scale geo-estimation challenge for social-media
videos and images. In Proceedings of the 3rd ACM Multimedia Workshop on Geotagging and
Its Applications in Multimedia, pages 27–31. ACM, 2014.

Jaeyoung Choi, Howard Lei, Venkatesan Ekambaram, Pascal Kelm, Luke Gottlieb, Thomas
Sikora, Kannan Ramchandran, and Gerald Friedland. Human vs machine: establishing a hu-
man baseline for multimodal location estimation. In Proceedings of the 21st ACM international
conference on Multimedia, pages 867–876. ACM, 2013.

Jaeyoung Choi, Gerald Friedland, et al. Multimodal Location Estimation of Videos and Images.
Springer, 2015.

Szu-Yu Chou, Jyh-Shing Roger Jang, and Yi-Hsuan Yang. Learning to recognize transient sound
events using attentional supervision. In IJCAI, pages 3336–3342, 2018.

Selina Chu, Shrikanth Narayanan, and C-C Jay Kuo. Environmental sound recognition with time–
frequency audio features. IEEE Transactions on Audio, Speech, and Language Processing, 17
(6):1142–1158, 2009.

Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid. Weakly supervised object local-
ization with multi-fold multiple instance learning. IEEE transactions on pattern analysis and
machine intelligence, 39(1):189–203, 2017.

Chloé Clavel, Thibaut Ehrette, and Gaël Richard. Events detection for an audio-based surveil-
lance system. In Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on,

153

http://www.neil-kb.com/
http://www.neil-kb.com/

pages 1306–1309. IEEE, 2005a.

Chloé Clavel, Thibaut Ehrette, and Gaël Richard. Events detection for an audio-based surveil-
lance system. In 2005 IEEE International Conference on Multimedia and Expo, pages 1306–
1309. IEEE, 2005b.

William G Cochran. Sampling techniques. John Wiley & Sons, 2007.

Courtenay V Cotton and Daniel PW Ellis. Audio fingerprinting to identify multiple videos of
an event. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International
Conference on, pages 2386–2389. IEEE, 2010.

Courtenay V Cotton and Daniel PW Ellis. Spectral vs. spectro-temporal features for acoustic
event detection. In 2011 IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), pages 69–72. IEEE, 2011.

Eduardo Coutinho, Jun Deng, and Bjorn Schuller. Transfer learning emotion manifestation across
music and speech. In Neural Networks (IJCNN), 2014 International Joint Conference on, pages
3592–3598. IEEE, 2014.

Michael Coyle, Desmond B Keenan, P Alexander Derchak, Marvin Sackner, Frank Wilhelm,
Keith Gilroy, Emerance M Gummels, Dana Michael Inman, Paul Kennedy, Mark Mitchnick,
et al. Systems and methods for respiratory event detection, September 11 2007. US Patent
7,267,652.

Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Co-clustering based classification for
out-of-domain documents. In Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 210–219. ACM, 2007.

Tore Dalenius. The problem of optimum stratification. Scandinavian Actuarial Journal, 1950
(3-4):203–213, 1950.

Tore Dalenius and Margaret Gurney. The problem of optimum stratification. ii. Scandinavian
Actuarial Journal, 1951(1-2):133–148, 1951.

Tore Dalenius and Joseph L Hodges Jr. Minimum variance stratification. Journal of the American
Statistical Association, 54(285):88–101, 1959.

Marie-Catherine De Marneffe and Christopher D Manning. Stanford typed dependencies manual.
Technical report, 2008.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE, 2009.

Jun Deng, Zixing Zhang, Erik Marchi, and Bjorn Schuller. Sparse autoencoder-based feature
transfer learning for speech emotion recognition. In 2013 Humaine Association Conference on
Affective Computing and Intelligent Interaction, pages 511–516. IEEE, 2013.

Daniel C Dennett. The role of language in intelligence. 1994.

Arnaud Dessein, Arshia Cont, and Guillaume Lemaitre. Real-time detection of overlapping sound
events with non-negative matrix factorization. In Matrix Information Geometry, pages 341–371.
Springer, 2013.

T G Dietterich, R H Lathrop, and T Lozano-Pérez. Solving the multiple instance problem with
axis-parallel rectangles. Artificial Intelligence, 89(1):31–71, 1997.

154

Chris Ding, Tao Li, and Michael I Jordan. Convex and semi-nonnegative matrix factorizations.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(1):45–55, 2010.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for
visual recognition and description. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2625–2634, 2015.

Merlin Donald. Précis of origins of the modern mind: Three stages in the evolution of culture
and cognition. Behavioral and brain sciences, 16(4):737–748, 1993.

Pinar Donmez, Guy Lebanon, and Krishnakumar Balasubramanian. Unsupervised supervised
learning i: Estimating classification and regression errors without labels. The Journal of Ma-
chine Learning Research, 11:1323–1351, 2010.

Daniel R Dooly, Qi Zhang, Sally A Goldman, and Robert A Amar. Multiple instance learning of
real valued data. The Journal of Machine Learning Research, 3:651–678, 2003.

Gregory Druck and Andrew McCallum. Toward interactive training and evaluation. In Proceed-
ings of the 20th ACM international conference on Information and knowledge management,
pages 947–956. ACM, 2011.

Lixin Duan, Dong Xu, and Shih-Fu Chang. Exploiting web images for event recognition in
consumer videos: A multiple source domain adaptation approach. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1338–1345. IEEE, 2012a.

Lixin Duan, Dong Xu, Ivor Wai-Hung Tsang, and Jiebo Luo. Visual event recognition in videos
by learning from web data. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
34(9):1667–1680, 2012b.

B. J. Dyson and C. Alain. Representation of concurrent acoustic objects in primary auditory
cortex. Journal of the Acoustic Society of America, 115(1):280–288, 2004.

Benjamin Elizalde, Anurag Kumar, Ankit Shah, Rohan Badlani, Emmanuel Vincent, Bhiksha
Raj, and Ian Lane. Experimentation on the dcase challenge 2016: Task 1acoustic scene classi-
fication and task 3sound event detection in real life audio. IEEE AASP Challenge: Detection
and Classification of Acoustic Scenes and Events, 2016.

Benjamin Elizalde, Ankit Shah, Siddharth Dalmia, Min Hun Lee, Rohan Badlani, Anurag Kumar,
Bhiksha Raj, and Ian Lane. An approach for self-training audio event detectors using web data.
In Signal Processing Conference (EUSIPCO), 2017 25th European, pages 1863–1867. IEEE,
2017.

Benjamin Elizalde, Rohan Badlani, Ankit Shah, Anurag Kumar, and Bhiksha Raj. Nels-never-
ending learner of sounds. arXiv preprint arXiv:1801.05544, 2018.

D. Ellis. Robust landmark-based audio fingerprinting. 09 2009.

Dan Ellis, Tuomas Virtanen, Mark D Plumbley, and Bhiksha Raj. Future perspective. In Com-
putational Analysis of Sound Scenes and Events, pages 401–415. Springer, 2018.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11(Feb):625–660, 2010.

Miquel Espi, Masakiyo Fujimoto, Daisuke Saito, Nobutaka Ono, and Shigeki Sagayama. A tandem
connectionist model using combination of multi-scale spectro-temporal features for acoustic

155

event detection. In ICASSP, pages 4293–4296, 2012.

Miquel Espi, Masakiyo Fujimoto, Keisuke Kinoshita, and Tomohiro Nakatani. Exploiting spectro-
temporal locality in deep learning based acoustic event detection. EURASIP Journal on Audio,
Speech, and Music Processing, 2015(1):26, 2015.

Rong-En Fan, K Chang, C Hsieh, X Wang, and C Lin. Liblinear: A library for large linear
classification. The Journal of Machine Learning Research, 2008.

Tom Fawcett. Roc graphs: Notes and practical considerations for researchers. Machine learning,
31(1):1–38, 2004.

Bernhard Feiten and Stefan Günzel. Automatic indexing of a sound database using self-organizing
neural nets. Computer Music Journal, 18(3):53–65, 1994.

Jacob Feldman. What is a visual object. Trends in Cognitive Science, 5:887–892, 2004.

Zheyun Feng, Songhe Feng, Rong Jin, and Anil K Jain. Image tag completion by noisy matrix
recovery. In European Conference on Computer Vision, pages 424–438. Springer, 2014.

Rob Fergus, Yair Weiss, and Antonio Torralba. Semi-supervised learning in gigantic image col-
lections. In Advances in neural information processing systems, pages 522–530, 2009.

Anthony Fleury, Norbert Noury, Michel Vacher, Hubert Glasson, and J-F Seri. Sound and speech
detection and classification in a health smart home. In Engineering in Medicine and Biology
Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pages 4644–
4647. IEEE, 2008.

Jonathan T Foote. Content-based retrieval of music and audio. In Multimedia Storage and Archiv-
ing Systems II, volume 3229, pages 138–148. International Society for Optics and Photonics,
1997.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,
volume 1. Springer series in statistics Springer, Berlin, 2001.

Kurt M Fristrup and William A Watkins. Marine animal sound classification. Technical report,
Woods Hole Oceanographic Institution, 1993.

J Gauvain and C Lee. Maximum a posteriori estimation for multivariate gaussian mixture obser-
vations of markov chains. Speech and audio processing, IEEE Trans. on, 1994.

William W Gaver. What in the world do we hear?: An ecological approach to auditory event
perception. Ecological psychology, 5(1):1–29, 1993.

Jort F Gemmeke, Lode Vuegen, Peter Karsmakers, Bart Vanrumste, et al. An exemplar-based
nmf approach to audio event detection. In 2013 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, pages 1–4. IEEE, 2013.

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Chan-
ning Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled
dataset for audio events. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on, pages 776–780. IEEE, 2017.

Oguzhan Gencoglu, Tuomas Virtanen, and Heikki Huttunen. Recognition of acoustic events using
deep neural networks. In Signal Processing Conference (EUSIPCO), 2014 Proceedings of the
22nd European, pages 506–510. IEEE, 2014.

Michael Grant and Stephen Boyd. Cvx: Matlab software for disciplined convex programming.

156

Richard L Gregory and Oliver Louis Zangwill. The Oxford companion to the mind. Oxford
University Press, 1987.

Timothdy D. Griffith and Jason D. Warren. What is an auditory object. Nature Reviews Neuro-
science, 7:2:252–256, 2003.

S Gunasekaran and K Revathy. Content-based classification and retrieval of wild animal sounds
using feature selection algorithm. In machine learning and computing (ICMLC), 2010 second
international conference on, pages 272–275. IEEE, 2010.

Guodong Guo and Stan Z Li. Content-based audio classification and retrieval by support vector
machines. IEEE transactions on Neural Networks, 14(1):209–215, 2003.

Honglei Guo, Huijia Zhu, Zhili Guo, Xiaoxun Zhang, Xian Wu, and Zhong Su. Domain adapta-
tion with latent semantic association for named entity recognition. In Proceedings of Human
Language Technologies: The 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 281–289. Association for Computational Lin-
guistics, 2009.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In Computer vision and pattern recognition, 2006 IEEE computer society conference
on, volume 2, pages 1735–1742. IEEE, 2006.

Jaap Haitsma and Ton Kalker. A highly robust audio fingerprinting system. In Ismir, volume
2002, pages 107–115, 2002.

Wenjing Han, Eduardo Coutinho, Huabin Ruan, Haifeng Li, Björn Schuller, Xiaojie Yu, and Xuan
Zhu. Semi-supervised active learning for sound classification in hybrid learning environments.
PloS one, 11(9):e0162075, 2016.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up
end-to-end speech recognition. arXiv preprint arXiv:1412.5567, 2014.

Morris H Hansen, William N Hurwitz, and William G Madow. Sample survey methods and
theory. 1953.

Kazuma Hashimoto, Pontus Stenetorp, Makoto Miwa, and Yoshimasa Tsuruoka. Task-oriented
learning of word embeddings for semantic relation classification. CoNLL 2015, page 268, 2015.

Tomoki Hayashi, Shinji Watanabe, Tomoki Toda, Takaaki Hori, Jonathan Le Roux, and Kazuya
Takeda. Bidirectional lstm-hmm hybrid system for polyphonic sound event detection. In
Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop
(DCASE2016), pages 35–39, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Laurie M Heller, Benjamin Skerritt, and Emily Ammerman. Perceptually important acoustic
features of environmental sounds. The Journal of the Acoustical Society of America, 125(4):
2724–2724, 2009.

Hynek Hermansky, Daniel PW Ellis, and Sangita Sharma. Tandem connectionist feature extrac-
tion for conventional hmm systems. In icassp, pages 1635–1638. IEEE, 2000.

Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren Jansen, R Channing

157

Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, et al. Cnn architectures
for large-scale audio classification. In Acoustics, Speech and Signal Processing (ICASSP), 2017
IEEE International Conference on, pages 131–135. IEEE, 2017.

Souta Hidaka and Masakazu Ide. Sound can suppress visual perception. Scientific reports, 5:
10483, 2015.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal processing magazine, 29(6):82–97, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Judy Hoffman, Deepak Pathak, Trevor Darrell, and Kate Saenko. Detector discovery in the wild:
Joint multiple instance and representation learning. In Proceedings of the ieee conference on
computer vision and pattern recognition, pages 2883–2891, 2015.

Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong. Cross-language knowledge transfer
using multilingual deep neural network with shared hidden layers. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 7304–7308. IEEE,
2013.

Qiang Huang and Stephen Cox. Hierarchical language modeling for audio events detection in a
sports game. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International
Conference on, pages 2286–2289. IEEE, 2010.

Thomas S Huang, Charlie K Dagli, Shyamsundar Rajaram, Edward Y Chang, Michael I Mandel,
Graham E Poliner, and Daniel PW Ellis. Active learning for interactive multimedia retrieval.
Proceedings of the IEEE, 96(4):648–667, 2008.

F. T. Husain, M. A. Tagamets, S. J. Fromm, A. R. Braun, and B. Horwitz. Relating neuronal
dynamics for auditory object processing to neuroimaging activity: a computational modeling
and an fmri study. Neuroimage, 21:1701–1720, 2004.

Ozan Irsoy, Olcay Taner Yildiz, and Ethem Alpaydin. Design and analysis of classifier learning
experiments in bioinformatics: survey and case studies. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics (TCBB), 9(6):1663–1675, 2012.

Ariel Jaffe, Boaz Nadler, and Yuval Kluger. Estimating the accuracies of multiple classifiers
without labeled data. arXiv preprint arXiv:1407.7644, 2014.

Aren Jansen, Manoj Plakal, Ratheet Pandya, Daniel PW Ellis, Shawn Hershey, Jiayang Liu,
R Channing Moore, and Rif A Saurous. Unsupervised learning of semantic audio representa-
tions. arXiv preprint arXiv:1711.02209, 2017.

Maxime Janvier, Xavier Alameda-Pineda, Laurent Girinz, and Radu Horaud. Sound-event recog-
nition with a companion humanoid. In 2012 12th IEEE-RAS International Conference on
Humanoid Robots (Humanoids 2012), pages 104–111. IEEE, 2012.

Yangqing Jia and Changshui Zhang. Instance-level semisupervised multiple instance learning. In
AAAI, pages 640–645, 2008.

Yu-Gang Jiang, Xiaohong Zeng, Guangnan Ye, Subhabrata Bhattacharya, Dan Ellis, Mubarak
Shah, and Shih-Fu Chang. Columbia-UCF TRECVID2010 multimedia event detection: Com-

158

bining multiple modalities, contextual concepts, and temporal matching. In NIST TRECVid
Workshop, volume 2, page 6, 2010.

Qin Jin, Peter Schulam, Shourabh Rawat, Susanne Burger, Duo Ding, and Florian Metze. Event-
based video retrieval using audio. In Thirteenth Annual Conference of the International Speech
Communication Association, 2012.

Biing-Hwang Juang and Lawrence R Rabiner. Automatic speech recognition–a brief history of
the technology development. Georgia Institute of Technology. Atlanta Rutgers University and
the University of California. Santa Barbara, 1:67, 2005.

I. Kant. Critique of pure reason. Macmillan, 2003.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3128–3137, 2015.

Namit Katariya, Amrit Iyer, and Sunita Sarawagi. Active evaluation of classifiers on large
datasets. In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 329–
338. IEEE, 2012.

S Sathiya Keerthi and Dennis DeCoste. A modified finite newton method for fast solution of
large scale linear svms. In Journal of Machine Learning Research, pages 341–361, 2005.

Pascal Kelm, Sebastian Schmiedeke, Jaeyoung Choi, Gerald Friedland, Venkatesan Nallampatti
Ekambaram, Kannan Ramchandran, and Thomas Sikora. A novel fusion method for integrating
multiple modalities and knowledge for multimodal location estimation. In Proceedings of the
2nd ACM international workshop on Geotagging and its applications in multimedia, pages 7–12.
ACM, 2013.

Muhammad Salman Khan, Miao Yu, Pengming Feng, Liang Wang, and Jonathon Chambers.
An unsupervised acoustic fall detection system using source separation for sound interference
suppression. Signal processing, 110:199–210, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Serkan Kiranyaz, Ahmad Farooq Qureshi, and Moncef Gabbouj. A generic audio classification and
segmentation approach for multimedia indexing and retrieval. IEEE Transactions on Audio,
Speech, and Language Processing, 14(3):1062–1081, 2006.

Tatsuya Komatsu, Takahiro Toizumi, Reishi Kondo, and Yuzo Senda. Acoustic event detection
method using semi-supervised non-negative matrix factorization with a mixture of local dictio-
naries. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016
Workshop (DCASE2016), pages 45–49, 2016.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?
arXiv preprint arXiv:1805.08974, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in neural information processing systems, pages 1097–
1105, 2012.

M. Kubovy and D. Van Valkenburg. Auditory and visual objects. Cognition, 80:97–126, 2001.

A Kumar, P Dighe, R Singh, S Chaudhuri, and B Raj. Audio event detection from acoustic unit
occurrence patterns. In IEEE ICASSP, pages 489–492, 2012.

159

A Kumar, R M Hegde, R Singh, and B Raj. Event detection in short duration audio using gaussian
mixture model and random forest classifier. In 21st European Signal Processing Conference 2013
(EUSIPCO 2013), 2013a.

Anurag Kumar and Bhiksha Raj. A novel ranking method for multiple classifier systems. In 2015
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1931–1935. IEEE, 2015a.

Anurag Kumar and Bhiksha Raj. Unsupervised fusion weight learning in multiple classifier
systems. arXiv preprint arXiv:1502.01823, 2015b.

Anurag Kumar and Bhiksha Raj. Weakly supervised scalable audio content analysis. In 2016
IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2016a.

Anurag Kumar and Bhiksha Raj. Audio event detection using weakly labeled data. In 24th ACM
International Conference on Multimedia. ACM Multimedia, 2016b.

Anurag Kumar and Bhiksha Raj. Features and kernels for audio event recognition. arXiv preprint
arXiv:1607.05765, 2016c.

Anurag Kumar and Bhiksha Raj. Audio event and scene recognition: A unified approach using
strongly and weakly labeled data. In Neural Networks (IJCNN), 2017 International Joint
Conference on, pages 3475–3482. IEEE, 2017a.

Anurag Kumar and Bhiksha Raj. Deep cnn framework for audio event recognition using weakly
labeled web data. In Machine Learning for Audio, 2017 NIPS Workshop on. NIPS, 2017b.

Anurag Kumar and Bhiksha Raj. Classifier risk estimation under limited labeling resources.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 3–15. Springer,
2018a.

Anurag Kumar and Bhiksha Raj. Learning to recognize sound events using webly labeled record-
ings submitted in. IEEE transactions on Neural Networks and Learning Systems, 2018b.

Anurag Kumar, Rajesh M Hegde, Rita Singh, and Bhiksha Raj. Event detection in short duration
audio using gaussian mixture model and random forest classifier. In 21st European Signal
Processing Conference 2013 (EUSIPCO 2013), 2013b.

Anurag Kumar, Rita Singh, and Bhiksha Raj. Detecting sound objects in audio recordings.
In Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European, pages
905–909. IEEE, 2014.

Anurag Kumar, Benjamin Elizalde, and Bhiksha Raj. Audio content based geotagging in multi-
media. Interspeech, 2017a.

Anurag Kumar, Bhiksha Raj, and Ndapandula Nakashole. Discovering sound concepts and acous-
tic relations in text. submitted IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017b.

Anurag Kumar, M. Khadkevich, and C. Fugen. Knowledge transfer from weakly labeled audio
using convolutional neural network for sound events and scenes. In Acoustics, Speech and Signal
Processing (ICASSP), 2018 IEEE International Conference on. IEEE, 2018.

Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object
classes by between-class attribute transfer. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 951–958. IEEE, 2009.

Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. In

160

Advances in neural information processing systems, pages 556–562, 2001.

Shane Legg, Marcus Hutter, et al. A collection of definitions of intelligence. Frontiers in Artificial
Intelligence and applications, 157:17, 2007.

Howard Lei, Jaeyoung Choi, and Gerald Friedland. Multimodal city-verification on flickr videos
using acoustic and textual features. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2273–2276. IEEE, 2012.

Guillaume Lemaitre and Laurie M Heller. Evidence for a basic level in a taxonomy of everyday
action sounds. Experimental Brain Research, pages 1–12, 2013.

Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. Content-based multimedia infor-
mation retrieval: State of the art and challenges. ACM Trans. Multimedia Comput. Commun.
Appl., 2:1–19, 2006.

David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark collection for
text categorization research. The Journal of Machine Learning Research, 5:361–397, 2004.

Stan Z Li. Face recognition based on nearest linear combinations. In Computer Vision and
Pattern Recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference on, pages
839–844. IEEE, 1998.

Stan Z Li. Content-based audio classification and retrieval using the nearest feature line method.
IEEE Transactions on Speech and Audio Processing, 8(5):619–625, 2000.

Yan Li, Junge Zhang, Kaiqi Huang, and Jianguo Zhang. Mixed supervised object detection with
robust objectness transfer. IEEE transactions on pattern analysis and machine intelligence,
2018.

Percy Liang. Semi-supervised learning for natural language. PhD thesis, Massachusetts Institute
of Technology, 2005.

Thomas Lidy and Alexander Schindler. Cqt-based convolutional neural networks for audio scene
classification. In Proceedings of the Detection and Classification of Acoustic Scenes and Events
2016 Workshop (DCASE2016), volume 90, pages 1032–1048. DCASE2016 Challenge, 2016.

Hyungjun Lim, Myung Jong Kim, and Hoirin Kim. Cross-acoustic transfer learning for sound
event classification. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE Inter-
national Conference on, pages 2504–2508. IEEE, 2016.

Joseph J Lim, Ruslan R Salakhutdinov, and Antonio Torralba. Transfer learning by borrowing
examples for multiclass object detection. In Advances in neural information processing systems,
pages 118–126, 2011.

Dima Litvak, Yaniv Zigel, and Israel Gannot. Fall detection of elderly through floor vibrations
and sound. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual
International Conference of the IEEE, pages 4632–4635. IEEE, 2008.

Zhu Liu, Jincheng Huang, Yao Wang, and Tsuhan Chen. Audio feature extraction and analysis
for scene classification. In Multimedia Signal Processing, 1997., IEEE First Workshop on,
pages 343–348. IEEE, 1997.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 3431–3440, 2015.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Dou Shen, and Qiang Yang. Transfer learning

161

with graph co-regularization. IEEE Trans. Knowl. Data Eng., 26(7):1805–1818, 2014.

Lie Lu, Hong-Jiang Zhang, and Stan Z Li. Content-based audio classification and segmentation
by using support vector machines. Multimedia systems, 8(6):482–492, 2003.

Xugang Lu, Yu Tsao, Shodai Matsuda, and Chiori Hori. Sparse representation based on a bag
of spectral exemplars for acoustic event detection. In IEEE ICASSP, pages 6255–6259, 2014.

Zhiwu Lu, Zhenyong Fu, Tao Xiang, Peng Han, Liwei Wang, and Xin Gao. Learning from weak
and noisy labels for semantic segmentation. IEEE transactions on pattern analysis and machine
intelligence, 39(3):486–500, 2017.

Jiebo Luo, Dhiraj Joshi, Jie Yu, and Andrew Gallagher. Geotagging in multimedia and computer
visiona survey. Multimedia Tools and Applications, 51(1):187–211, 2011.

Gary Lupyan. Linguistically modulated perception and cognition: the label-feedback hypothesis.
Frontiers in psychology, 3:54, 2012.

Emma Lynch, Lisa Angeloni, Kurt Fristrup, Damon Joyce, and George Wittemyer. The use of
on-animal acoustical recording devices for studying animal behavior. Ecology and evolution, 3
(7):2030–2037, 2013.

Richard F Lyon. Machine hearing: An emerging field [exploratory dsp]. IEEE signal processing
magazine, 27(5):131–139, 2010.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Abdul Majid, Ling Chen, Gencai Chen, Hamid Turab Mirza, Ibrar Hussain, and John Woodward.
A context-aware personalized travel recommendation system based on geotagged social media
data mining. International Journal of Geographical Information Science, 27(4):662–684, 2013.

Michael I Mandel and Daniel PW Ellis. Multiple-instance learning for music information re-
trieval. In ISMIR 2008: Proceedings of the 9th International Conference of Music Information
Retrieval, pages 577–582. Drexel University, 2008.

Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learning. Advances in
neural information processing systems, pages 570–576, 1998.

Alvin Martin, George Doddington, Terri Kamm, Mark Ordowski, and Mark Przybocki. The det
curve in assessment of detection task performance. Technical report, National Inst of Standards
and Technology Gaithersburg MD, 1997.

Janvier Maxime, Xavier Alameda-Pineda, Laurent Girin, and Radu Horaud. Sound representation
and classification benchmark for domestic robots. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 6285–6292. IEEE, 2014.

Stephen McAdams. Recognition of auditory sound sources and events. Thinking in sound: the
cognitive psychology of human audition, 1993.

Brian McFee, Justin Salamon, and Juan Pablo Bello. Adaptive pooling operators for weakly
labeled sound event detection. arXiv preprint arXiv:1804.10070, 2018.

Ian McLoughlin, Haomin Zhang, Zhipeng Xie, Yan Song, and Wei Xiao. Robust sound event
classification using deep neural networks. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 23(3):540–552, 2015.

MediaEval. http://www.multimediaeval.org/, 2015.

162

http://www.multimediaeval.org/

Prem Melville, Wojciech Gryc, and Richard D Lawrence. Sentiment analysis of blogs by com-
bining lexical knowledge with text classification. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1275–1284. ACM,
2009.

Annamaria Mesaros, Toni Heittola, Antti Eronen, and Tuomas Virtanen. Acoustic event detection
in real life recordings. In 18th European Signal Processing Conference, pages 1267–1271, 2010.

Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Tut database for acoustic scene clas-
sification and sound event detection. In 24th European Signal Processing Conference, volume
2016, 2016.

Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Assessment of human and machine
performance in acoustic scene classification: Dcase 2016 case study. In Applications of Signal
Processing to Audio and Acoustics (WASPAA), 2017 IEEE Workshop on, pages 319–323. IEEE,
2017.

T Mikolov and J Dean. Distributed representations of words and phrases and their composition-
ality. Advances in neural information processing systems, 2013.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge, A. Carlson, B. Dalvi,
M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole,
E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. Never-ending learning. Commun. ACM, 61:103–115,
2018.

Dalibor Mitrovic, Matthias Zeppelzauer, and Christian Breiteneder. Discrimination and retrieval
of animal sounds. In Multi-Media Modelling Conference Proceedings, 2006 12th International,
pages 5–pp. IEEE, 2006.

Brian CJ Moore. An introduction to the psychology of hearing. Brill, 2012.

Jonas Mueller and Aditya Thyagarajan. Siamese recurrent architectures for learning sentence
similarity. In AAAI, pages 2786–2792, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–
814, 2010.

Ndapandula Nakashole, Gerhard Weikum, and Fabian M. Suchanek. Discovering semantic rela-
tions from the web and organizing them with PATTY. SIGMOD Record, 42(2):29–34, 2013.

Stavros Ntalampiras. A transfer learning framework for predicting the emotional content of
generalized sound events. The Journal of the Acoustical Society of America, 141(3):1694–1701,
2017.

James P Ogle and Daniel PW Ellis. Fingerprinting to identify repeated sound events in long-
duration personal audio recordings. In Acoustics, Speech and Signal Processing, 2007. ICASSP
2007. IEEE International Conference on, volume 1, pages I–233. IEEE, 2007.

Eng-Jon Ong, Syed Husain, and Miroslaw Bober. Siamese network of deep fisher-vector descrip-
tors for image retrieval. 02 2017.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-
level image representations using convolutional neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1717–1724, 2014.

163

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2010.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Cross-domain
sentiment classification via spectral feature alignment. In Proceedings of the 19th international
conference on World wide web, pages 751–760. ACM, 2010.

S Pancoast and M Akbacak. Bag-of-audio-words approach for multimedia event classification. In
Interspeech, 2012.

Fabio Parisi, Francesco Strino, Boaz Nadler, and Yuval Kluger. Ranking and combining multiple
predictors without labeled data. Proceedings of the National Academy of Sciences, 111(4):
1253–1258, 2014.

N. M. Patil and M. U. Nemade. Content-based audio classification and retrieval: A novel ap-
proach. In 2016 International Conference on Global Trends in Signal Processing, Information
Computing and Communication (ICGTSPICC), pages 599–606, 2016.

R.D. Patterson, M.H. Allerhand, and C. Giguere. Time-domain modeling of peripheral auditory
processing: a modular architecture and a software platform. Journal of the acoustic society of
america, 98:1890–1894, 1995.

SR Payne, WJ Davies, and MD Adams. Research into the practical and policy applications of
soundscape concepts and techniques in urban areas. 2009.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–43, 2014.

Huy Phan, Marco Maass, Radoslaw Mazur, and Alfred Mertins. Early event detection in audio
streams. In 2015 IEEE International Conference on Multimedia and Expo (ICME), pages 1–6.
IEEE, 2015a.

Huy Phan, Marco Maaß, Radoslaw Mazur, and Alfred Mertins. Random regression forests for
acoustic event detection and classification. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 23:20–31, 2015b.

Huy Phan, Lars Hertel, Marco Maass, and Alfred Mertins. Robust audio event recognition with
1-max pooling convolutional neural networks. arXiv preprint arXiv:1604.06338, 2016.

Karol J Piczak. Environmental sound classification with convolutional neural networks. In Ma-
chine Learning for Signal Processing (MLSP), 2015 IEEE 25th International Workshop on,
pages 1–6. IEEE, 2015a.

Karol J Piczak. Esc: Dataset for environmental sound classification. In Proceedings of the 23rd
ACM international conference on Multimedia, pages 1015–1018. ACM, 2015b.

Aggelos Pikrakis, Theodoros Giannakopoulos, and Sergios Theodoridis. Gunshot detection in
audio streams from movies by means of dynamic programming and bayesian networks. In
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference
on, pages 21–24. IEEE, 2008.

Christopher J Plack. The sense of hearing. Routledge, 2018.

Emmanouil Antonios Platanios, Avrim Blum, and Tom Mitchell. Estimating accuracy from
unlabeled data. 2014.

Mihail Popescu, Yun Li, Marjorie Skubic, and Marilyn Rantz. An acoustic fall detector system
that uses sound height information to reduce the false alarm rate. In Engineering in Medicine

164

and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE,
pages 4628–4631. IEEE, 2008.

Yonggang Qi, Yi-Zhe Song, Honggang Zhang, and Jun Liu. Sketch-based image retrieval via
siamese convolutional neural network. pages 2460–2464, 09 2016.

Asma Rabaoui, Manuel Davy, Stéphane Rossignol, and Noureddine Ellouze. Using one-class svms
and wavelets for audio surveillance. IEEE Transactions on information forensics and security,
3(4):763–775, 2008.

Colin Raffel and Daniel PW Ellis. Large-scale content-based matching of midi and audio files. In
ISMIR, pages 234–240, 2015.

Manon Raimbault and Daniele Dubois. Urban soundscapes: Experiences and knowledge. Cities,
22(5):339–350, 2005.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-
supervised learning with ladder networks. In Advances in Neural Information Processing Sys-
tems, pages 3546–3554, 2015.

Shourabh Rawat, Peter F Schulam, Susanne Burger, Duo Ding, Yipei Wang, and Florian Metze.
Robust audio-codebooks for large-scale event detection in consumer videos. 2013.

Jianfeng Ren, Xudong Jiang, Junsong Yuan, and Nadia Magnenat-Thalmann. Sound-event clas-
sification using robust texture features for robot hearing. IEEE Trans. Multimedia, 19(3):
447–458, 2017.

Bruno H Repp. The sound of two hands clapping: An exploratory study. The Journal of the
Acoustical Society of America, 81(4):1100–1109, 1987.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Cognitive modeling, 5:3, 1988.

B. Russell. A history of western philosophy. Simon and Schuster, 1945.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Malaysia; Pearson
Education Limited,, 2016.

Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks and data augmentation
for environmental sound classification. IEEE Signal Processing Letters, 24(3):279–283, 2017.

Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and taxonomy for urban
sound research. In Proceedings of the 22nd ACM international conference on Multimedia, pages
1041–1044. ACM, 2014.

J Sánchez, F Perronnin, T Mensink, and J Verbeek. Image classification with the fisher vector:
Theory and practice. International Journal of Computer Vision, 2013.

Christoph Sawade, Niels Landwehr, Steffen Bickel, and Tobias Scheffer. Active risk estimation.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
951–958, 2010.

R Murray Schafer. The soundscape: Our sonic environment and the tuning of the world. Inner
Traditions/Bear & Co, 1993.

W Andrew Schloss. On the automatic transcription of percussive music–from acoustic signal to
high-level analysis. 1986.

Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, and In So Kweon. Learning to

165

localize sound source in visual scenes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4358–4366, 2018.

RJ Serfling. Approximately optimal stratification. Journal of the American Statistical Associa-
tion, 63(324):1298–1309, 1968.

VK Sethi. A note on optimum stratification of populations for estimating the population means.
Australian Journal of Statistics, 5(1):20–33, 1963.

Xavier Sevillano, Xavier Valero, and Francesc Aĺıas. Audio and video cues for geo-tagging online
videos in the absence of metadata. In Content-Based Multimedia Indexing (CBMI), 2012 10th
International Workshop on, pages 1–6. IEEE, 2012.

Ankit Shah, Harini Kesavamoorthy, Poorva Rane, Pramati Kalwad, Alexander Hauptmann, and
Florian Metze. Activity recognition on a large scale in short videos-moments in time dataset.
arXiv preprint arXiv:1809.00241, 2018a.

Ankit Shah, Anurag Kumar, Alexander G Hauptmann, and Bhiksha Raj. A closer look at weak
label learning for audio events. arXiv preprint arXiv:1804.09288, 2018b.

Shihab Shamma. On the role of space and time in auditory processing. Trends in Cognitive
Science, 5:340–348, 2001.

Ling Shao, Fan Zhu, and Xuelong Li. Transfer learning for visual categorization: A survey. IEEE
transactions on neural networks and learning systems, 26(5):1019–1034, 2015.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages 806–813, 2014.

Barry G Sherlock, DM Monro, and K Millard. Fingerprint enhancement by directional fourier
filtering. IEE Proceedings-Vision, Image and Signal Processing, 141(2):87–94, 1994.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ravindra Singh. Approximately optimum stratification on the auxiliary variable. Journal of the
American Statistical Association, 66(336):829–833, 1971.

Alex J Smola and Bernhard Schölkopf. Learning with kernels. Citeseer, 1998.

Alexander J Smola, SVN Vishwanathan, and Thomas Hofmann. Kernel methods for missing
variables. In AISTATS. Citeseer, 2005.

Y Song and C Zhang. Content-based information fusion for semi-supervised music genre classifi-
cation. Multimedia, IEEE Transactions on, pages 145–152, 2008.

Yi-Cheng Song, Yong-Dong Zhang, Juan Cao, Tian Xia, Wu Liu, and Jin-Tao Li. Web video
geolocation by geotagged social resources. Multimedia, IEEE Transactions on, 14(2):456–470,
2012.

D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M.D. Plumbley. Detection and classifi-
cation of acoustic scenes and events. Multimedia, IEEE Transactions on, PP, 2015.

Dan Stowell. Computational bioacoustic scene analysis. In Computational Analysis of Sound
Scenes and Events, pages 303–333. Springer, 2018.

Dan Stowell and Mark D Plumbley. Automatic large-scale classification of bird sounds is strongly
improved by unsupervised feature learning. PeerJ, 2014.

166

Dan Stowell, Mike Wood, Yannis Stylianou, and Hervé Glotin. Bird detection in audio: a survey
and a challenge. arXiv preprint arXiv:1608.03417, 2016.

Ting-Wei Su, Jen-Yu Liu, and Yi-Hsuan Yang. Weakly-supervised audio event detection using
event-specific gaussian filters and fully convolutional networks. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 791–795, 2017.

Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall,
Michael B Gotway, and Jianming Liang. Convolutional neural networks for medical image
analysis: Full training or fine tuning? IEEE transactions on medical imaging, 35(5):1299–
1312, 2016.

Naoya Takahashi, Michael Gygli, Beat Pfister, and Luc Van Gool. Deep convolutional neural
networks and data augmentation for acoustic event detection. arXiv preprint arXiv:1604.07160,
2016.

Jinhui Tang, Shuicheng Yan, Richang Hong, Guo-Jun Qi, and Tat-Seng Chua. Inferring semantic
concepts from community-contributed images and noisy tags. In Proceedings of the 17th ACM
international conference on Multimedia, pages 223–232. ACM, 2009.

Ib Thomsen. A comparison of approximately optimal stratification given proportional allocation
with other methods of stratification and allocation. Metrika, 23(1):15–25, 1976.

Yuji Tokozume and Tatsuya Harada. Learning environmental sounds with end-to-end convo-
lutional neural network. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on, pages 2721–2725. IEEE, 2017.

Tatiana Tommasi, Francesco Orabona, and Barbara Caputo. Safety in numbers: Learning cate-
gories from few examples with multi model knowledge transfer. In Proceedings of IEEE Com-
puter Vision and Pattern Recognition Conference, 2010.

A. Treisman. Properties, parts and objects. Handbook of perception and human performance,
Cognitive processes and performance, 2:35–1:35–70, 1986.

Michele Trevisiol, Hervé Jégou, Jonathan Delhumeau, and Guillaume Gravier. Retrieving geo-
location of videos with a divide & conquer hierarchical multimodal approach. In Proceedings of
the 3rd ACM conference on International conference on multimedia retrieval, pages 1–8. ACM,
2013.

Shao-Yen Tseng, Juncheng Li, Yun Wang, Joseph Szurley, Florian Metze, and Samarjit Das.
Multiple instance deep learning for weakly supervised audio event detection. arXiv preprint
arXiv:1712.09673, 2017.

G Valenzise, L Gerosa, M Tagliasacchi, F Antonacci, and A Sarti. Scream and gunshot de-
tection and localization for audio-surveillance systems. In Advanced Video and Signal Based
Surveillance, IEEE Conference on, pages 21–26, 2007.

Aäron Van Den Oord, Sander Dieleman, and Benjamin Schrauwen. Transfer learning by su-
pervised pre-training for audio-based music classification. In Conference of the International
Society for Music Information Retrieval (ISMIR 2014), 2014.

Jan C Van Gemert, Cor J Veenman, Arnold WM Smeulders, and Jan-Mark Geusebroek. Visual
word ambiguity. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(7):
1271–1283, 2010.

A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision algo-

167

rithms, 2008.

Tuomas Virtanen, Mark D Plumbley, and Dan Ellis. Computational analysis of sound scenes and
events. Springer, 2018.

Avery Wang et al. An industrial strength audio search algorithm. In Ismir, volume 2003, pages
7–13. Washington, DC, 2003.

Chong Wang, Weiqiang Ren, Kaiqi Huang, and Tieniu Tan. Weakly supervised object localization
with latent category learning. In European Conference on Computer Vision, pages 431–445.
Springer, 2014a.

Fangzhou Wang, Sourish Chaudhuri, Daniel Ellis, and Nathan Reale. Automatic smoothed cap-
tioning of non-speech sounds from audio, September 28 2017. US Patent App. 15/245,152.

Feng Wang, Zhanhu Sun, Yu-Gang Jiang, and Chong-Wah Ngo. Video event detection using
motion relativity and feature selection. Multimedia, IEEE Transactions on, 16(5):1303–1315,
2014b.

J Wang and J Zucker. Solving the multiple-instance problem: A lazy learning approach. In Proc.
of 7th International Conference on Machine Learning, 2000.

Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep structure-preserving image-text
embeddings. pages 5005–5013, 06 2016.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos.
In Proceedings of the IEEE International Conference on Computer Vision, pages 2794–2802,
2015.

Yun Wang and Florian Metze. A transfer learning based feature extractor for polyphonic sound
event detection using connectionist temporal classification. 2017.

Yun Wang, Juncheng Li, and Florian Metze. Comparing the max and noisy-or pooling functions
in multiple instance learning for weakly supervised sequence learning tasks. arXiv preprint
arXiv:1804.01146, 2018.

William H Warren and Robert R Verbrugge. Auditory perception of breaking and bouncing
events: a case study in ecological acoustics. Journal of Experimental Psychology: Human
perception and performance, 10(5):704, 1984.

X Wei, J Wu, and Z Zhou. Scalable multi-instance learning. In Data Mining (ICDM), 2014 IEEE
Intl. Conf. on. IEEE, 2014.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal
of Big Data, 3(1):9, 2016.

Paul J Werbos. Applications of advances in nonlinear sensitivity analysis. In System modeling
and optimization, pages 762–770. Springer, 1982.

Erling Wold, Thom Blum, Douglas Keislar, and James Wheaten. Content-based classification,
search, and retrieval of audio. IEEE multimedia, 3(3):27–36, 1996.

Jia Wu, Shirui Pan, Xingquan Zhu, Chengqi Zhang, and S Yu Philip. Multiple structure-view
learning for graph classification. IEEE transactions on neural networks and learning systems,
pages 1–16, 2017.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas Stolcke, Dong
Yu, and Geoffrey Zweig. Achieving human parity in conversational speech recognition. arXiv

168

preprint arXiv:1610.05256, 2016.

Ziyou Xiong, Regunathan Radhakrishnan, Ajay Divakaran, and Thomas S Huang. Audio events
detection based highlights extraction from baseball, golf and soccer games in a unified frame-
work. In Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE
International Conference on, volume 5, pages V–632. IEEE, 2003a.

Ziyou Xiong, Regunathan Radhakrishnan, Ajay Divakaran, and Thomas S Huang. Audio events
detection based highlights extraction from baseball, golf and soccer games in a unified frame-
work. In Multimedia and Expo, 2003. ICME’03. Proceedings. 2003 International Conference
on, volume 3, pages III–401. IEEE, 2003b.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov,
Richard S Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. arXiv preprint arXiv:1502.03044, 2(3):5, 2015a.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, and Zhi Jin. Classifying relations via
long short term memory networks along shortest dependency paths. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015, pages 1785–1794, 2015b.

Yong Xu, Qiuqiang Kong, Qiang Huang, Wenwu Wang, and Mark D Plumbley. Attention and
localization based on a deep convolutional recurrent model for weakly supervised audio tagging.
arXiv preprint arXiv:1703.06052, 2017.

Zhe Xu, Shaoli Huang, Ya Zhang, and Dacheng Tao. Augmenting strong supervision using web
data for fine-grained categorization. In Proceedings of the IEEE international conference on
computer vision, pages 2524–2532, 2015c.

Jun Yang, Rong Yan, and Alexander G Hauptmann. Cross-domain video concept detection using
adaptive svms. In Proceedings of the 15th ACM international conference on Multimedia, pages
188–197. ACM, 2007.

Guangnan Ye, I Jhuo, Dong Liu, Yu-Gang Jiang, DT Lee, Shih-Fu Chang, et al. Joint audio-visual
bi-modal codewords for video event detection. In Proceedings of the 2nd ACM International
Conference on Multimedia Retrieval, page 39. ACM, 2012.

Guangnan Ye, Yitong Li, Hongliang Xu, Dong Liu, and Shih-Fu Chang. Eventnet: A large scale
structured concept library for complex event detection in video. In Proceedings of the 23rd
ACM international conference on Multimedia, pages 471–480. ACM, 2015.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in
deep neural networks? In Advances in neural information processing systems, pages 3320–3328,
2014.

Dong Yu, Balakrishnan Varadarajan, Li Deng, and Alex Acero. Active learning and semi-
supervised learning for speech recognition: A unified framework using the global entropy re-
duction maximization criterion. Computer Speech & Language, 24(3):433–444, 2010.

Neil Zeghidour, Gabriel Synnaeve, Nicolas Usunier, and Emmanuel Dupoux. Joint learning of
speaker and phonetic similarities with siamese networks. In INTERSPEECH, pages 1295–1299,
2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

169

Han Zhang, Tao Xu, Mohamed Elhoseiny, Xiaolei Huang, Shaoting Zhang, Ahmed Elgammal,
and Dimitris Metaxas. Spda-cnn: Unifying semantic part detection and abstraction for fine-
grained recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1143–1152, 2016.

Haomin Zhang, Ian McLoughlin, and Yan Song. Robust sound event recognition using convo-
lutional neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on, pages 559–563. IEEE, 2015.

Jianguo Zhang, Marcin Marsza lek, Svetlana Lazebnik, and Cordelia Schmid. Local features and
kernels for classification of texture and object categories: A comprehensive study. International
journal of computer vision, 73(2):213–238, 2007.

Zixing Zhang and Björn Schuller. Semi-supervised learning helps in sound event classification. In
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on,
pages 333–336. IEEE, 2012.

Zhi-Hua Zhou and Jun-Ming Xu. On the relation between multi-instance learning and semi-
supervised learning. In Proceedings of the 24th international conference on Machine learning,
pages 1167–1174. ACM, 2007.

Zhi-Hua Zhou and Min-Ling Zhang. Neural networks for multi-instance learning. In Proceedings
of the International Conference on Intelligent Information Technology, Beijing, China, pages
455–459, 2002.

Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li. Multi-instance learning by treating instances as non-
iid samples. In Proceedings of the 26th annual international conference on machine learning,
pages 1249–1256. ACM, 2009.

Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Synthesis lectures
on artificial intelligence and machine learning, 3:1–130, 2009.

Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised learning using gaussian
fields and harmonic functions. In ICML, 2003.

Xiaodan Zhuang, Jing Huang, Gerasimos Potamianos, and Mark Hasegawa-Johnson. Acoustic
fall detection using gaussian mixture models and gmm supervectors. 2009.

Xiaodan Zhuang, Xi Zhou, Mark A Hasegawa-Johnson, and Thomas S Huang. Real-world acoustic
event detection. Pattern Recognition Letters, 31(12):1543–1551, 2010.

Eberhard Zwicker and Hugo Fastl. Psychoacoustics: Facts and models, volume 22. Springer
Science & Business Media, 2013.

170

	1 Introduction
	1.1 Sound/Audio Events and Acoustic Scenes
	1.1.1 Sound Objects
	1.1.2 Sound Events
	1.1.3 Acoustic Scenes

	1.2 Acoustic Intelligence in Machines (AIM)
	1.3 Natural Language Understanding of Sounds
	1.4 Large Scale Sound Event Detection
	1.4.1 Labeled Data Challenge
	1.4.2 Evaluation of Models on Large Scale

	1.5 Applications
	1.6 Performance Metrics
	1.7 Organization

	2 Natural Language Understanding of Sounds
	2.1 Introduction
	2.1.1 Related Works

	2.2 Audible Phrases or Sonic Phrases
	2.2.1 Finding Audible Phrases: Cataloging Sounds
	2.2.2 Unsupervised Cataloging of Sounds
	2.2.3 Analysis of Unsupervised Method
	2.2.4 Supervised Filtering

	2.3 Learning Acoustic Scene-Concept Relations
	2.3.1 Training Data
	2.3.2 Classification

	2.4 Summary and Conclusions

	3 Scaling Audio Event Detection: - The Promise of Weak Label Learning
	3.1 Introduction
	3.2 Literature on Audio Event Detection
	3.3 Weakly Labeled Learning of Audio Events
	3.3.1 Problem Formulation

	3.4 Multiple Instance Learning
	3.4.1 MIL using Support Vector Machines
	3.4.2 MIL using Neural Networks (NN-MIL)

	3.5 MIL for Weakly Labeled AED
	3.5.1 Temporal Localization of Events

	3.6 Experiments and Results
	3.6.1 Features for Audio Segments
	3.6.2 Experimental Setup
	3.6.3 Results
	3.6.4 Temporal Localization of Events

	3.7 Scalable MIL Methods
	3.7.1 miFV
	3.7.2 miSUP
	3.7.3 Experiments and Results

	3.8 Discussions and Conclusions

	4 Deep Learning for Weakly Labeled Audio Event Detection
	4.1 Introduction
	4.2 Weakly Supervised Deep Networks
	4.2.1 Strong Label Assumption Training
	4.2.2 Weakly Labeled Training
	4.2.3 Characteristics of WLAT
	4.2.4 Loss Function

	4.3 Experiments and Results: Weakly Labeled Learning
	4.3.1 Datasets
	4.3.2 Multi-Scale Acoustic Features
	4.3.3 Network Architectures
	4.3.4 Metrics and Experimental Setup
	4.3.5 Urbansounds Results
	4.3.6 YouTube Results
	4.3.7 Temporal Localization

	4.4 Experiments and Results: Large Vocabulary Weakly Labeled Learning
	4.4.1 Experiments with Logmel Acoustic Features

	4.5 Experiments and Results: Google Embeddings and Attention Like Mapping Functions
	4.5.1 Network Architecture
	4.5.2 Results

	4.6 Closer Look at Weakly Labeled Learning
	4.6.1 Label Density
	4.6.2 Corrupted Labels Noise
	4.6.3 Weakly Labeled Audio In the Wild

	4.7 Summary and Conclusions

	5 A Unified Framework: Combining Weakly and Strongly Labeled Data
	5.1 Introduction
	5.2 Naive WEASL
	5.3 Generalized WEASL
	5.4 graph-WEASL
	5.4.1 Manifold Regularization approach for WEASL
	5.4.2 Optimization Solution

	5.5 Experiments and Results
	5.5.1 Experimental Setup
	5.5.2 Audio Event Recognition
	5.5.3 Recognition of Strongly Labeled Events Set
	5.5.4 Acoustic Scene Recognition

	5.6 Discussions and Conclusions

	6 Transfer Learning for Sounds
	6.1 Introduction
	6.1.1 Related Works

	6.2 Transfer and Representation Learning
	6.2.1 Direct Off-the-shelf Representations
	6.2.2 Transfer and Adapt for Learning Representations

	6.3 Target Tasks
	6.3.1 Sound Event Classification On ESC-50 dataset
	6.3.2 Acoustic Scenes Classification

	6.4 Experiments and Results
	6.4.1 Experimental Setup Details
	6.4.2 Results: Sound Event Classification on ESC-50
	6.4.3 Results: Acoustic Scene Classification
	6.4.4 Additional Analysis

	6.5 Summary and Conclusions

	7 Evaluation on Large Scale: Limited Labeling Budget
	7.1 Introduction
	7.1.1 Related Works

	7.2 Accuracy Estimation
	7.2.1 Simple Random Sampling Estimation

	7.3 Stratified Sampling Estimation
	7.3.1 Proportional (PRO) Allocation
	7.3.2 Equal (EQU) Allocation
	7.3.3 Optimal (OPT) Allocation
	7.3.4 Comparison of Variances
	7.3.5 Stratification Methods

	7.4 Experiments and Results
	7.4.1 Proportional Allocation
	7.4.2 Equal Allocation
	7.4.3 Optimal Allocation
	7.4.4 Dependence on True Accuracy

	7.5 Summary and Future Directions

	8 Some Applications
	8.1 Geotagging in Multimedia
	8.1.1 Audio Semantic Content based Geotagging
	8.1.2 Learning Ml and Wl using semi-NMF
	8.1.3 Discriminative Learning using Wl
	8.1.4 Kernel Fusion for Semantic Content based Prediction
	8.1.5 Experiments and Results

	8.2 Query by Example Retrieval
	8.2.1 Siamese Network for Encoding
	8.2.2 Representations and Retrieval
	8.2.3 Dataset and Experimental Setup
	8.2.4 Siamese Network Training
	8.2.5 Evaluation and results
	8.2.6 Results and Discussion

	8.3 Never Ending Learning of Sounds

	9 Conclusions and Future Works
	9.1 Self Training for AED
	9.1.1 Clarity Index Based Instance Selection
	9.1.2 Experiments and Results

	9.2 Conclusions and Future Works

	Bibliography

